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Abstract 
 
A two-dimensional acoustic duct with rigid parallel walls is considered. For such a duct, a 
novel formula for the Green’s function is derived by means of adding and subtracting the 
Green’s function for Laplace equation with the boundary conditions of the duct. The Green’s 
function is used to obtain a new formula for the pressure field generated by a vibrating piston 
mounted to a duct wall. The formula is a sum of a quickly converging series and a singular 
integral. It is shown that a singularity in the integral is logarithmic and, therefore, the integral 
is converging and can be evaluated. The formula derived here as well as a formula derived on 
the basis of a well-known expression for the duct Green’s function are utilised to calculate the 
near field of the piston in the area of the duct directly above the piston. The dependency of the 
pressure on the vertical coordinate above the middle of the piston is calculated. During these 
calculations, the numbers of terms required for the convergence of the series in both formulae 
are obtained. It is shown that, with the same criterion of convergence, the formula obtained 
here requires the number of terms up to one and a half orders of magnitude smaller than the 
traditional formula. Amplitude and phase discrepancies for both formulae are also calculated. 
It is shown that the formula obtained here results in the discrepancies up to three orders of 
magnitude smaller than the traditional formula with the same convergence criterion. 

1 INTRODUCTION 

Methods of control of sound propagation in ducts are currently under active theoretical and 
experimental investigation, as the issue of noise control in ducts is important for the design of 
muffling devices and controlling the air conditioning duct noise. Most, if not all, existing 
strategies of active noise control in ducts are based on a formula, derived by Doak [1]. This 
formula determines the pressure field of a vibrating piston in a waveguide as an infinite sum 
of normal waveguide modes. 
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 In real circumstances, usually several lower order modes are propagating, whereas all 
higher order modes are evanescent and exponentially decay with increasing distance from the 
source. As the evanescent modes do not give a significant contribution to the far field, the 
practice has been to neglect them when considering the cancellation of an incident plane 
sound wave in an active noise control system. 

It is known, however, that evanescent modes are important for determining the 
amplitude and phase of the vibrations of the controlling sound source in an active noise 
control system, as they may lead to significant additional fluid-loading of the source. The 
contribution of the evanescent modes is acknowledged, for example, by Huang [2], who used 
the Doak’s formula for a detailed analysis of control of sound propagation in a two-
dimensional duct by means of a rigid piston mounted in a duct wall. 

To solve scattering problems in acoustic waveguides, the author and his former co-
authors have previously suggested a method, which is based on a waveguide Green’s function 
transformed into a quickly converging form [3]. This method has been further developed by 
the author in a series of publications in application to two-dimensional [4] and three-
dimensional [5,6] fluid layers. 

In the present article, the method developed by the author is applied to the problem of 
sound generation by a rigid piston, vibrating with given amplitude in a two-dimensional duct. 
The objective of the article is to derive a formula allowing an efficient calculation of the 
piston pressure field and to compare its convergence with the convergence of the formula 
obtained by Huang [2] on the basis of Doak’s formula [1].  

2 THE LAYOUT OF THE DUCT AND THE REPRESENTATION OF THE 
RADIATED ACOUSTIC FIELD 

Consider a two-dimensional plane infinite duct of width, D, filled with a compressible perfect 
fluid of density, ρ, and sound speed, c (Figure 1). 

 
  

Figure 1. Layout of the duct. 
 
A rigid piston of width, d, is mounted to one of the duct walls and vibrates in the normal 
direction with the velocity amplitude, V, and the angular frequency, ω. The x-axis is parallel 
to the duct walls, the y-axis is normal to the walls, and the origin coincides with the medium 
point of the piston. The harmonic temporal dependence, ie tω− , is assumed, and all variables 
having the dimension of length are normalised on D/π.  

In the analysis below, ( ),x y  is the observation point, ( )0 0,x y  is the source point, 
2 /k D λ=  is the non-dimensional wavenumber, λ is the acoustic wavelength. 

Let the pressure field, ( ),P x y , generated by the piston in the duct, be expressed as a 
field of a single layer with the strength, ( )0xµ : 
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  ( ) ( ) ( )
/ 2

0 0 0/ 2
, , ; ,0 ,

d

d
P x y x G x y x dxµ

−
= ∫  (1) 

 
where ( )0 0, ; ,G x y x y  is the duct Green’s function, and by the conditions of zero velocity on 
the top and bottom boundaries of the duct outside the limits of the piston: 
 

  ( ) ( )
0

2, 2, 0.
y y D

P x d y P x d y
y y= =

∂ ∂
> = > =

∂ ∂
  (2) 

 
Based on Euler’s equation, the following boundary condition on the surface of the piston can 
be obtained: 
 

  ( )
0

/ 2, i .
y

P x d y V kc
y

ρ
=

∂
< =

∂
 (3) 

 
The substitution of Eq. (3) into Eq. (1) determines the following formula for the non-
dimensional pressure field ( ) ( ), ,P x y P x y cVρ=  in the duct: 
 

  ( ) ( )
/ 2

0 0/ 2
, i , ; ,0 .

d

d
P x y k G x y x dx

−
= − ∫  (4) 

3 THE DUCT GREEN’S FUNCTION 

3.1 The Green’s function in the traditional form 

The Green’s function of the duct in its traditional form is an infinite series of normal duct 
modes: 

  ( ) 0i
0 0 0

0

i, ; , cos cos e
2π

ng x xn

n n

G x y x y ny ny
g
ε∞

−

=

= ∑ , (5) 

where 2 2
ng k n= −  are longitudinal wavenumbers, and Neumann factor, 2nε =  for 0n >  

and 0 1ε = . 
 The convergence of Eq. (5) depends strongly on the horizontal distance, 0x x− , 

between the source and observation points. On the one hand, at large 0x x−  the series 
becomes finite, as its terms of orders n k>  decay exponentially with increasing n. On the 
other hand, at 0x x→  the convergence of the series significantly worsens, and the use of the 
Green’s function in the form of Eq. (5) becomes impractical.  

Moreover, at 0 0 0x x y y− = − =  Eq. (5) is divergent. This means that the Green’s 
function is singular at observation points coinciding with source points. At the same time, 
analytical or numerical integration of a function with a singularity in the form of divergent 
series is difficult. Thus, transformation of the duct Green’s function into a more convenient 
form is required for the efficient use of Eq. (4) for calculating the pressure field in the duct. 
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3.2 Transformation of the Green’s function of the duct into a more efficient form 

In the work described here, the duct Green’s function in the form of Eq. (5) will be 
transformed by a method based on Kummer’s transformation (Formula 3.6.26 of the reference 
[7]) of the series of the duct modes. This method has been successfully developed by the 
author and his co-authors in application to scattering problems in two-dimensional [3,4] and 
three-dimensional [5,6] plane acoustic waveguides with both boundaries acoustically soft as 
well as with one rigid and one soft boundary. Kummer’s transformation has been also used by 
Linton [8] to derive the Green’s function in a plane two-dimensional duct with acoustically 
soft boundaries. 

Here this method will be applied to the two-dimensional duct with acoustically rigid 
boundaries. The duct Green’s function, transformed by the method, is a sum of a quickly 
converging infinite series and an asymptotic term, which accommodates the Green’s function 
singularity at 0 0 0x x y y− = − = . 

To derive a modified expression for the duct Green’s function, consider the Green’s 
function, ( )0 0, ; ,LG x y x y , for the Laplace equation: 

  ( ) 0
0 0 0

0

1, ; , cos cos e .
2π

n x xn
L

n
G x y x y ny ny

n
ε∞

− −

=

= ∑  (6) 

 
( )0 0, ; ,LG x y x y  can be obtained from ( )0 0, ; ,G x y x y , determined by Eq. (5), by substituting 
0k = . 

With the use of known formulae [9], the infinite series in the above equation can be 
summed as follows: 
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Subtracting Eq. (6) from Eq. (5) and adding it back in the form of Eq. (7), one can obtain the 
following expression for the duct Green’s function: 
 

 
( )

( )( ) ( )( )
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0

i i
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1
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2π π

1 ln 4e cosh cos cosh cos .
4π

nk x x g x x n x x

n n

x x
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=

− −
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⎝ ⎠
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∑
 (8) 

 
Eq. (8) represents one of the results of the current work. It can be shown easily that, at 

n>>k, the terms of the infinite series are of the order ( )( )2/O k n , and the series converges 
quickly at any 0x x− . In addition, the Green’s function singularity at 0 0 0x x y y− = − =  is 
incorporated into the third term, which can be shown to have the logarithmic singularity. 
Therefore, the Green’s function in the form of Eq. (8) can be integrated without difficulty 
over the domain, containing acoustic sources, if the observation point also belongs to this 
domain. These advantages of the Green’s function so obtained are utilised below in 
calculating the pressure field of the piston, mounted to a duct wall. 
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4 PRESSURE FIELD OF THE PISTON 

On the basis of the general three-dimensional formula, derived by Doak [1], Huang [2] 
obtained formulae for the pressure field of a plane rigid piston, shown in Figure 1 of this 
paper. If the frequency is below the first cut-on, so that only zero order mode propagates 
through the duct, the pressure field in the area directly above the piston is determined as 
follows [2]: 
 

( ) [ ] ( )/ 2i / 2
2

1

/ 2, 1 2 i 11 e cos cos 1 e cosh ,
i π π

ng dkd
n

n n

P x d y kkx ny g x
cV k gρ

∞
−

=

< ⎡ ⎤= − − − −⎣ ⎦∑  (9) 

 
On the other hand, substitution of the Green’s function of the duct in the form of Eq. (8) 

to Eq. (4) gives the following alternative equation determining the pressure field, generated by 
the piston: 
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∞
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⎪ ⎪⎩ ⎭

∫

∑
 (10) 

 
 In addition to Eq. (8), Eq. (10) also represents a result of the current work. The 
advantages of Eq. (10) are demonstrated below in numerical experiments. 

5 NUMERICAL EXPERIMENTS  

5.1 Parameters 

The pressure field of the piston, shown in Figure 1, has been calculated numerically for the 
following parameters. The piston length, d, is considered to be equal to the duct width, D. The 
non-dimensional wavenumber, k=0.5, is chosen to be below its value, k=1, for the first cut-on 
frequency. The region of interest in this paper is the area of the duct above the piston. 

5.2 Convergence of the series 

An important issue in such calculations is the criterion for achieving the convergence of the 
series. In the present work, the convergence criterion is formulated as follows. A series, 
determined by 
 

  
1

,n
n

S S
∞

=

= ∑  (11) 

 
is considered to have converged at some maxn N= , if any of the following two conditions are 
satisfied for max 2N N= − , max 1N N= − , and maxN N= : 
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1

, .
N

N n N
n

S S Sε δ
=

≤ ≤∑  (12) 

 
Here the convergence errors ε  and δ  are small positive numbers satisfying the condition 
0 1.δ ε< <  

5.3 Accuracy of the calculations of the pressure field in the duct 

The calculations are carried out at 200 points across the duct at 0x =  for two values of the 
convergence error 310ε −=  and 610ε −=  and for 1210δ −= . 
 Figure 2 represents the dependence of parameters characterising the convergence of the 
series in Eqs. (9) and (10) on the normalised vertical coordinate, y/D, at x=0. The number of 
terms, maxN  required to achieve the convergence of the series in Eqs. (9) and (10) is shown in 
Figures 2a and 2b. It can be seen clearly, that the convergence of the series in Eq. (10) 
obtained here requires only several terms for both values of the convergence error, ε. On the 
other hand, for the traditional Eq. (9), the number of terms depends strongly on ε  and reaches 
nearly 310  for 610ε −= . 
 Let the accuracy of the calculations of the pressure field be described by the amplitude 
and phase errors, A∆  and ∆ϕ . Let the errors be defined with respect to a reference pressure, 

refP , as follows:  

  ( ) ( )1 , arg arg .ref
ref

PA P P
P

∆ ∆ϕ= − = −  (13) 

 Figures 2c and 2d represent A∆ , whereas ∆ϕ  is shown in Figures 2e and 2f. Values of 
P , calculated by Eq. (9) for the convergence error 910ε −= , are taken as the reference 
pressure, as both Eq. (9) and Eq. (10) give results tending to these values with decreasing ε . 
 Analysis of these Figures shows that the accuracy of determining P  by means of Eq. (10) 
is significantly better than that by Eq. (9) with the same criterion of convergence. Indeed, at 

310ε −=  both errors for Eq. (9) for most values of y D  are between 1 and 2 orders of 
magnitude larger than those for Eq. (10). At 610ε −= , the errors for Eq. (9) are, on average, 
only marginally smaller than the errors for Eq. (10), but this result is achieved by taking into 
account significantly larger number of terms in the series in comparison with Eq. (10) 
(Figures 2a and 2b). 
 The pressure on the surface of the piston is of special interest as its knowledge is 
necessary for the calculation of the piston impedance that determines the radiated sound 
power. It is clear from Figures 2c, 2d, 2e, and 2f that the accuracy of calculating the non-
dimensional pressure P  at y=0 is between 2 and 3 orders of magnitude worse for the 
traditional Eq. (9) than for Eq. (10) derived here. Therefore, Eq. (10) appears to be more 
suitable for use in solving problems of sound generation and noise control in ducts. 
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Figure 2. Results of the numerical experiments versus the normalised y at x=0. a,b) The 
number of terms required to achieve the convergence of the series; c,d) amplitude error; 
e,f) phase error; left: 310ε −= ; right: 610ε −= ; dotted line: Eq. (9); solid line: Eq. (9). 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

6 CONCLUSIONS 

In the present work, the calculation of the pressure field generated by a vibrating piston 
mounted to a wall of a two-dimensional duct has been considered. To calculate the pressure 
field, a novel expression for the Green’s function of the duct has been derived. The expression 
so obtained differs from the known expression for the duct Green’s function by the presence 
of an asymptotic term, which takes account of all higher-order evanescent duct modes up to 
infinite order. The other part of the novel expression for the Green’s function is an infinite 
series, which converges quickly. 
 The Green’s function derived in this work has been used to obtain a formula for the 
pressure field generated by the piston. The numerical experiments show that the formula 
obtained here has a significant advantage as compared with the known formula. Whereas the 
latter can produce reliable results only if hundreds of the duct modes are taken into 
consideration, the convergence of the former can be achieved with only several terms of the 
series. The formula derived here can be considered to be more accurate than the traditional 
one as it leads to smaller amplitude and phase errors if the same convergence criterion is used. 
 The numerical experiments also show that the convergence errors for the new formula 
on the surface of the piston are two to three orders of magnitude smaller than the errors for the 
traditional one. As the pressure on the piston surface is used to calculate the piston impedance 
to predict the radiated sound, the new formula can be recommended for use in solving sound 
radiation and noise control problems in ducts.   
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