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Abstract

An active Vibration Clamping Absorber (VCA) technique for ration suppression in flexible
structures is proposed and investigated in this paper. @tfentque uses a Quadratic-Modal-
Positive-Position-Feedback strategy to design a simmerskorder nonlinear controller that
is capable of suppressing structural vibrations at varfessnances. The VCA can effectively
transfer vibration energy from the main structure to anotaerificial absorber so that large
amplitude vibrations in the main structure can be clampddiwiolerable limits. The effec-
tiveness of the VCA design is demonstrated through singldarand multiple-mode control
on a flexible cantilever beam system using one sensor/actpatr. The theoretical analysis
and experimental results reveal that the proposed desigibeaised for real-time control of
vibration in large flexible structures.

1. INTRODUCTION

Flexible beam elements constructed with fabrics, compssiolymers, and light metals are

increasingly employed in a variety of large structures irogpace, robotics, marine, and ma-

chinery industries. These lighter structures, howeverpawysically characterised by low struc-

tural damping, low stiffness, and low natural frequenc@snsequently, the structures readily

experience high-amplitude resonances under externarblésices, such as forces produced by
unbalanced rotating machines, reciprocating machines)ack impacts.

To solve these problems, various control techniques hase peposed, of which modal
control is the most widely reported methad2, 3, 4]. One of the advantages of modal control
is that it allows each mode of the structure to be controlfetpendently of the other modes.
Because of this characteristic, standard control probleomsh as control system sensitivity,
observability, and stability problems can be readily adslegl.

As a result of recently rapid advancements in smart stradeghnology interest in modal
control has again been revived. Inman'’s resel@cthows that if modal compensation is used
as a control law and designed to roll-off at higher frequesicspillover is not a problem. How-
ever, most of the control methods used in modal control failfle structures have focused on
linear state-space feedback or linear output feedbackalasttategies using modal displace-
ment or modal velocity as the feedback sighab, 7]. These methods are very effective for
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free vibration problems but not for dynamically changingcéd vibration problems. Forced
vibration applications with changing frequency and arogki are usually categorised into the
class of nonlinear and time-varying systems, thereforalimear control methods are required
in the forced vibration control. One traditional passivehteique used to solve forced resonance
vibration problems is to add an additional mass-springfmkanmto the system as a Dynamic
Vibration Absorber (DVA) to transfer vibration energy tcethacrificial DVA8|. For forced vi-
bration problems, nonlinear vibration control techniquas however provide better solutions
than linear modal control metho@s 10]. Therefore, to actively suppress forced vibration in
flexible structures which are susceptible to low frequemspnant vibrations, an active Vibra-
tion Clamping Absorber (VCA) has been designed. This desigmoawes the DVA and modal
control techniques together in a distributed way. VCAs cabulok as integrated elements of a
structure by using the so-called smart materials, suchezeplectric materials, magnetostric-
tive materials, and shape memory alloys. In particularzgedectric materials such dsad
Zirconate Titanate (PZT) orPolyvinylidene Fluoride (PVDF) can be produced as thin films that
can be bonded to the surface of large flexible structuregusmong adhesive materials. Thus,
they can provide spatially distributed information abdé structures and are particularly suit-
able for strain-based sensors and actuators used for adbregion control in large flexible
structures. The principle of VCA is to use such smart matet@transfer energy between me-
chanical structures and electrical sinks. The vibraticergycan then be dissipated or absorbed
via variable electrical impedances.

2. LINEAR DYNAMIC MODEL FOR FLEXIBLE STRUCTURES

From the principle of modal analysis, it is known that the ptete dynamic behaviour of a
structure can be discretised as a set of individual modegbadition, each having a character-
istic natural frequency, damping factor, and mode shape.dyguhese modal parameters to
represent the system model, vibration problems at speesgtmances can be examined and sub-
sequently solved. Consider the class of flexible systemgitesichy the following generalised
wave equation:

m(X)W(x, t) + 2¢OYAW(x, 1) + Ow(x,t) = F(x, 1), (1)

which relates the displacememtx, t) of the equilibrium position of a bod{ in M/ -dimensional
space to the applied force distributi®iix, t). The operato® is a time-invariant symmetric,
nonnegative differential operator with a square 1®3t?, and its domairD(©) is dense in the
Hilbert spaced = M?(Q2). The mass density(x) is a positive function of the locationon the
body with a square roah(x)*/2. Without changing the properties of the above system, Bq. (
can be normalised by the change of variables, such as wgig)/m(x)¥/? to replacew(x, t).
For simplicity and without losing generalitg(x) = | is assumed. From the above condition
of operator®, it is known that its spectrum contains only separated e@eps), with corre-
sponding orthogonal eigenfunctiong in D(0), suchthat) < A\; < Ay < -+ < )\, Q¢ =

AL Oy and)\,iﬂgzbk = widr, Wherew, is the k' vibration mode resonance frequency ands
the corresponding vibration mode shape of the flexible &ireand satisfies the orthogonality
conditiorj11]. According to the nature of Hilbert space, the solutionsef(E) can be expressed
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as:

w(xt) = ka(t)d)k(l‘)a 2)

k=1

wherewy(t) is the mode amplitude, antf is the number of modes which should be infinity
in theory. However, in practice, it is customary to assunawr{x, t) can be represented with
good fidelity by a truncated mode expression of the form of(Bgwhere M may be large but
finite[12].

Similarly, the distribution of applied point forces at can be discretised and expanded
as:

F(x;,t) = Fe(z;,t) + Fe(wi, t) = Z Jer(t)dr(x:) + Z Jer (1) dr(23), (3)

whereF, represents the external excitation forces Bpdepresents the control forces provided
by point-force actuators.

In the following analysis, the case of primary resonance®issidered and the external
force can be defined by a set df harmonic excitations with amplitudg, and angular fre-
qguencys2; close to one of the natural frequencies, ife,,= F} cog€2t). Substituting Egs.2)
and @) into Eq. (), multiplying through by (x;), integrating over the domain of the structure,
and using the orthogonality property of tihe(x;), it is readily obtained that:

D(t) + 2CAY20(t) + Av(t) = fo(t) + (1), (4)

whereA'/?is aM x M diagonal matrix with diagonal entries, ws, - - - ,way,
v(t) = [oi(t), o], felt) = [faa(t), -, feur @], felt) = [far(t), -, feur(t)]" and
the damping matrixX = diag(¢1, o, -+, Cur)-

Any one of the modal displacementgt), in non-dimensional form, can be written as:

due to the scalar form representation of E4), (wherek = 1,2,--- , M. The purpose of us-
ing the non-dimensional form here is that all the naturadjdiencies are normalised after in-
troducing a set of dimensionless variables such as nonrdiioieal modal displacement and
non-dimensional tim@3).

3. VCADESIGN

In order to deal with forced vibrations (nonautonomouseays), a Quadratic-Modal-Positive-
Position-Feedback (QMPPF) control algorithm has beergdesi. Based on the QMPPF algo-
rithm, a distributed nonlinear vibration clamping absaerbeeferred to as VCA for the remain-
der of this paper, is developed for the structure descrilyeldp 6). The purpose of the VCA
is to channel the vibration energy to the VCA controller frdma structure upon which primary
external excitations are imposed. To achieve this purpiheeQMPPF has been designed to
provide a control force which is intended to follow the ex@rforce, but with opposite phase.
This principle is developed from the basic features of th B}, The design methodology for
the active VCA is summarised below.
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The structure’s:’” mode displacement is described by Es). The QMPPF control law
is then designed as:

Jeu(t) = Kupwrmi(t), (6)

whereK,, is a positive feedback control gain. The tenfit) is the quadratic term of the VCA
displacement which can be designed as:

ik (t) + 28, meni () + @i (t) = Kopwgvr(6)ne(t), (7)

wherew;, is a designed angular frequency of the VCA,is the VCA controller's damping
ratio, andKs is a control gain. By using the method of multiple scglds one can obtain the
first-order approximate solutions for EQS) &nd (/) as:

v, = aCog{Yt + 1), (8)
1
me = b Cos(éﬁkt + 2), 9)

wherea andy, are the amplitude and phase angle of the vector represamtstthek” mode

of the structure, respectively;andy, are the corresponding amplitude and phase angle of the
vector representation of the VCA's displacement, respelstiDefine the two detuning param-
etersr ando as:

= W — 2wk, (10)
o = Qk — Wg. (11)

The modulation equations that govern the amplitudes ansigshare given by:

—Gwra — BB sina + fi sing,
b = &b+ K"”“ absina,
af = oca+ Enp? COSa + fx COSP,
ba+0) = (14+0)b+ B2k qh cosa.,

(12)

The parameters, 3, and f; in Eq. (12) are defined as = 7t 4+ p; — 2, 8 = ot — ¢, and

fr = Fy/4. These parameters are deliberately designed in the VCA tort@ahble for control
purposes. For example, a threshold valgefor external excitations can be designed so that
when the amplitude of external excitations is below thigshiold, the VCA will not take any
action, i.e.p = 0. While the amplitude of external excitations is greater thanthe VCA will
clamp the structure’s response to a limit and transfer theation energy to itself. Solving the
equilibrium points of Eqg.12), the value of this threshold ford&; can be calculated as:

4 1
Fo = (02 + (Pw?) {—(7’ +0)2+ Ewi. (13)
sz 4

This value can be determined experimentally by increaduegeixcitation forcel'; until the
structural vibration amplitude is just acceptable. Thes fifedback control gaik’,, can be
designed according to the above equation. In order to keegmall so that the corresponding
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vibration amplitude is small, the design paramejeof VCA should be small.
The control force generated by the VCA can be obtained by sutissg Eq. ©) into
Eq. ) as:

b b
fer(t) = Kupwi(ni)? = K1kwk§ - KlkaE cog (), (14)
where the second component of the right side of Bg) (epresents a control force that can
equal the external excitatiorfy(cos(2,t) but with opposite phase.
When the VCA is not activated, i.e.,= 0,

) S (15)

When the VCA is activated, i.eh,# 0,

V&t + Hr + o)
4 ,
Ko

2 2 3
= King { {T —g %o — <kwk£kwk:| =+ {Ki%fk - (T —; JCkwk + fkwkU)Q} } (17)

(16)

[SIE

It is clear from Eq. 16) that the amplitude of vibration in the structure is indegemt of the
amplitude of the external forcg.. This is because the excitation energy has been transterred
the VCA controller and the structural vibration has been gad

4. EXPERIMENTAL STUDIESFOR THE VCA

A simple cantilever beam system was selected and used asaaksehicle to evaluate both
the QMPPF control strategy and the VCA controller. In thedwihg studies, primary resonant
excitations are considered as they cause serious vibsatidhe structure whefl, = w;,. The
bending modal parameters of the beam system were deterrexpesimentally using modal
testing method15] and are shown in Tablg. To verify the theoretical analyses, a physical

Table 1. Modal Characteristics of the Beam System

Characteristics Mode 1| Mode 2 | Mode 3
Natural frequency (Hz) 11.4 68.5 149.8
Modal damping 0.0030 | 0.00002| =~0

system was constructed to test the active structural wibratontrol system. The test system
comprises 250 x 13 x 0.6 mm mild steel beam with a strain gauge sensor and a piezoteram
actuator patch, mounted on a 100N shaker. The output of tha gjauge is proportional to
the modal displacement on the point where the strain gauigstalled. The system was con-
trolled using a dSpace digital controller. A schematic daagof the physical system is shown in
Fig. 1(a). The physical cantilever beam system is shown inKig). where the middle structures
are not in contact with the beam but used to support the scidés.
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Figure 1. (a) Schematic of the controlled cantilever beam system. (b) Hsécphcantilever beam sys-
tem.

When the shaker’s frequency is tuned to 11.4Hz (i.e., therfimde frequency) and the
acceleration produced by the shaket i8g, the first mode resonance causes large amplitude
vibrations with the beam’s tip displacement over 200 mm Kgegeak). After the vibration is
fully developed, the VCA controller is switched on at thé"2€cond time mark. Fig&(a) and
2(b) show the experimental results of the structure’s firsdetime-response and the enlarged
part of (a) around the 24 second time mark, respectively.ekperimental results confirm the
expected results from the theoretical analysis.

(b)

Strain of the structure (volt)
Strain of the structure (volt)

(o} 10 20 30 40 50 20 21 22 23 24 25 26 27
Time (sec.) Time (sec.)

Figure 2. Experimental results of the first-mode time-response under thecdgatrol: (a) the sensor
response; and (b) zoomed part af;.

When the shaker’s frequency is tuned to 68.5Hz (i.e., thermkowde frequency) and the
acceleration produced by the shaker is 1.0g, the second rasdeance causes large amplitude
vibrations. Figs.3(a) and3(b) show the experimental results of the structure’s segnade
time-response and the enlarged part of (a) around the 1hdeicoe mark, respectively. It can
be seen that the structural vibration has been successiybgressed even when the external
force frequency is at the second resonant frequency.

When the beam is excited under a multiple frequency sinukeiadtation with frequen-
cies of 11.4Hz and 68.5Hz, and the acceleration producetidoghaker is 3.0g, the combined
resonances cause even larger amplitude vibrations4gayshows the experimental results of
the structure’s combined mode time-response around the@md time mark. It can be seen
that the structural vibration has been successfully sigspeieven when the external force fre-
guencies are close to the first and second harmonics of tha.bBae experimental results
further validate the theoretical analysis of multiple maodatrol. The Power Spectrum Density
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analysis of multiple mode vibration is shown in F&(b). The suppression effect achieved by
the VCA can be more than 30dB.

(b)

Strain of the structure (volt)
Strain of the structure (volt)
o

o 5 10 15 20 10.5 11 11.5 12
Time (sec.) Time (sec.)

Figure 3. Experimental results of the second-mode steady-state timarsespder the VCA control:
(a) the sensor responsgand (b) zoomed part af,.

5. CONCLUSIONS

The effectiveness of the VCA design based on the QMPPF syrdiag been validated un-
der single-mode and multiple-mode control on a flexible it@rdgr beam system with a single
sensor and actuator pair. The experimental responsesietithiiom the physical system have
demonstrated that the VCA can be used to control multi-maosien@nces in flexible structures.

It should be noted that the method used in the multiple modé&alcase is based on the
assumption that the structural natural frequencies arelwspaced and independent of each
othef3]. Under this assumption, the response of the system can besespted by a series of
SDOF systems. Therefore, the VCAs can be designed so thateatrbls a different mode of
the system. If there is significant interaction between twirle$13], this assumption may be
invalid, in which case other control methods would be needed

T T T T T T T
= = uncontrolled
Ny ®

02 @

Strain of the structure (volt)
o
Power Spectral Density (dB/Hz)

-110-

24.6 24.8 . 25 25.2 25.4 25.6 _12% 2‘0 42] 6‘0 B‘O l(‘)O 1‘20 l“iO léO léO 260
Time (sec.) Frequency (Hz)

Figure 4. Experimental results of the first- and second-mode time-respmaer the VCA control: (a)
the sensor response and (b)Power Spectral Density with and withodCeontrol.
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