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Abstract

An active Vibration Clamping Absorber (VCA) technique for vibration suppression in flexible
structures is proposed and investigated in this paper. The technique uses a Quadratic-Modal-
Positive-Position-Feedback strategy to design a simple second-order nonlinear controller that
is capable of suppressing structural vibrations at variousresonances. The VCA can effectively
transfer vibration energy from the main structure to another sacrificial absorber so that large
amplitude vibrations in the main structure can be clamped within tolerable limits. The effec-
tiveness of the VCA design is demonstrated through single-mode and multiple-mode control
on a flexible cantilever beam system using one sensor/actuator pair. The theoretical analysis
and experimental results reveal that the proposed design can be used for real-time control of
vibration in large flexible structures.

1. INTRODUCTION

Flexible beam elements constructed with fabrics, composites, polymers, and light metals are
increasingly employed in a variety of large structures in aerospace, robotics, marine, and ma-
chinery industries. These lighter structures, however, are physically characterised by low struc-
tural damping, low stiffness, and low natural frequencies.Consequently, the structures readily
experience high-amplitude resonances under external disturbances, such as forces produced by
unbalanced rotating machines, reciprocating machines, orshock impacts.

To solve these problems, various control techniques have been proposed, of which modal
control is the most widely reported method[1, 2, 3, 4]. One of the advantages of modal control
is that it allows each mode of the structure to be controlled independently of the other modes.
Because of this characteristic, standard control problems,such as control system sensitivity,
observability, and stability problems can be readily addressed.

As a result of recently rapid advancements in smart structure technology interest in modal
control has again been revived. Inman’s research[2] shows that if modal compensation is used
as a control law and designed to roll-off at higher frequencies, spillover is not a problem. How-
ever, most of the control methods used in modal control for flexible structures have focused on
linear state-space feedback or linear output feedback control strategies using modal displace-
ment or modal velocity as the feedback signal[5, 6, 7]. These methods are very effective for
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free vibration problems but not for dynamically changing forced vibration problems. Forced
vibration applications with changing frequency and amplitude are usually categorised into the
class of nonlinear and time-varying systems, therefore, nonlinear control methods are required
in the forced vibration control. One traditional passive technique used to solve forced resonance
vibration problems is to add an additional mass-spring-damper into the system as a Dynamic
Vibration Absorber (DVA) to transfer vibration energy to the sacrificial DVA[8]. For forced vi-
bration problems, nonlinear vibration control techniquescan however provide better solutions
than linear modal control methods[9, 10]. Therefore, to actively suppress forced vibration in
flexible structures which are susceptible to low frequency resonant vibrations, an active Vibra-
tion Clamping Absorber (VCA) has been designed. This design combines the DVA and modal
control techniques together in a distributed way. VCAs can bebuilt as integrated elements of a
structure by using the so-called smart materials, such as piezoelectric materials, magnetostric-
tive materials, and shape memory alloys. In particular, piezoelectric materials such asLead
Zirconate Titanate (PZT) orPolyvinylidene Fluoride (PVDF) can be produced as thin films that
can be bonded to the surface of large flexible structures using strong adhesive materials. Thus,
they can provide spatially distributed information about the structures and are particularly suit-
able for strain-based sensors and actuators used for activevibration control in large flexible
structures. The principle of VCA is to use such smart materials to transfer energy between me-
chanical structures and electrical sinks. The vibration energy can then be dissipated or absorbed
via variable electrical impedances.

2. LINEAR DYNAMIC MODEL FOR FLEXIBLE STRUCTURES

From the principle of modal analysis, it is known that the complete dynamic behaviour of a
structure can be discretised as a set of individual modes of vibration, each having a character-
istic natural frequency, damping factor, and mode shape. By using these modal parameters to
represent the system model, vibration problems at specific resonances can be examined and sub-
sequently solved. Consider the class of flexible systems described by the following generalised
wave equation:

m(x)ẅ(x, t) + 2ζΘ
1/2ẇ(x, t) + Θw(x, t) = F(x, t), (1)

which relates the displacementw(x, t) of the equilibrium position of a bodyΩ in M -dimensional
space to the applied force distributionF(x, t). The operatorΘ is a time-invariant symmetric,
nonnegative differential operator with a square rootΘ

1/2, and its domainD(Θ) is dense in the
Hilbert spaceH = M2(Ω). The mass densitym(x) is a positive function of the locationx on the
body with a square rootm(x)1/2. Without changing the properties of the above system, Eq. (1)
can be normalised by the change of variables, such as usingw(x, t)/m(x)1/2 to replacew(x, t).
For simplicity and without losing generality,m(x) = I is assumed. From the above condition
of operatorΘ, it is known that its spectrum contains only separated eigenvaluesλk with corre-
sponding orthogonal eigenfunctionsφk in D(Θ), such that0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn,Θφk =

λkφk, andλ
1/2
k

φk = ωkφk, whereωk is thekth vibration mode resonance frequency andφk is
the corresponding vibration mode shape of the flexible structure and satisfies the orthogonality
condition[11]. According to the nature of Hilbert space, the solutions of Eq. (1) can be expressed
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as:

w(x, t) =
M

∑

k=1

vk(t)φk(x), (2)

wherevk(t) is the mode amplitude, andM is the number of modes which should be infinity
in theory. However, in practice, it is customary to assume that w(x, t) can be represented with
good fidelity by a truncated mode expression of the form of Eq.(2) whereM may be large but
finite[12].

Similarly, the distribution of applied point forces atxi can be discretised and expanded
as:

F(xi, t) = Fe(xi, t) + Fc(xi, t) =
M

∑

k=1

fek(t)φk(xi) +
M

∑

k=1

fck(t)φk(xi), (3)

whereFe represents the external excitation forces andFc represents the control forces provided
by point-force actuators.

In the following analysis, the case of primary resonances isconsidered and the external
force can be defined by a set ofM harmonic excitations with amplitudeFk and angular fre-
quencyΩk close to one of the natural frequencies, i.e.,fek = Fk cos(Ωkt). Substituting Eqs. (2)
and (3) into Eq. (1), multiplying through byφk(xi), integrating over the domain of the structure,
and using the orthogonality property of theφk(xi), it is readily obtained that:

v̈(t) + 2ζ∆
1/2v̇(t) + ∆v(t) = fe(t) + fc(t), (4)

where∆1/2 is aM × M diagonal matrix with diagonal entriesω1, ω2, · · · , ωM ,

v(t) = [v1(t), · · · , vM(t)]T , fe(t) = [fe1(t), · · · , feM(t)]T , fc(t) = [fc1(t), · · · , fcM(t)]T and
the damping matrixζ = diag(ζ1, ζ2, · · · , ζM).

Any one of the modal displacementsvk(t), in non-dimensional form, can be written as:

v̈k(t) + 2ζkωkv̇k(t) + ω2
k
vk(t) = Fk cos(Ωkt) + fck(t), (5)

due to the scalar form representation of Eq. (4), wherek = 1, 2, · · · ,M . The purpose of us-
ing the non-dimensional form here is that all the natural frequencies are normalised after in-
troducing a set of dimensionless variables such as non-dimensional modal displacement and
non-dimensional time[13].

3. VCA DESIGN

In order to deal with forced vibrations (nonautonomous systems), a Quadratic-Modal-Positive-
Position-Feedback (QMPPF) control algorithm has been designed. Based on the QMPPF algo-
rithm, a distributed nonlinear vibration clamping absorber - referred to as VCA for the remain-
der of this paper, is developed for the structure described by Eq. (5). The purpose of the VCA
is to channel the vibration energy to the VCA controller from the structure upon which primary
external excitations are imposed. To achieve this purpose,the QMPPF has been designed to
provide a control force which is intended to follow the external force, but with opposite phase.
This principle is developed from the basic features of the DVA[8]. The design methodology for
the active VCA is summarised below.
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The structure’skth mode displacement is described by Eq. (5). The QMPPF control law
is then designed as:

fck(t) = K1kωkη
2
k
(t), (6)

whereK1k is a positive feedback control gain. The termη2
k
(t) is the quadratic term of the VCA

displacement which can be designed as:

η̈k(t) + 2ξk̟kη̇k(t) + ̟2
k
ηk(t) = K2k̟kvk(t)ηk(t), (7)

where̟k is a designed angular frequency of the VCA,ξk is the VCA controller’s damping
ratio, andK2k is a control gain. By using the method of multiple scales[14], one can obtain the
first-order approximate solutions for Eqs. (5) and (7) as:

vk = a cos(Ωkt + ϕ1), (8)

ηk = b cos(
1

2
Ωkt + ϕ2), (9)

wherea andϕ1 are the amplitude and phase angle of the vector representation of thekth mode
of the structure, respectively;b andϕ2 are the corresponding amplitude and phase angle of the
vector representation of the VCA’s displacement, respectively. Define the two detuning param-
etersτ andσ as:

τ = ωk − 2̟k, (10)

σ = Ωk − ωk. (11)

The modulation equations that govern the amplitudes and phases are given by:



















ȧ = −ζkωka − K1k

4
b2 sinα + fk sinβ,

ḃ = −ξk̟kb + K2k

4
ab sinα,

aβ̇ = σa + K1k

4
b2 cosα + fk cosβ,

b(α̇ + β̇) = (τ + σ)b + K2k

2
ab cosα.

(12)

The parametersα, β, andfk in Eq. (12) are defined asα = τt + ϕ1 − 2ϕ2, β = σt − ϕ1, and
fk = Fk/4. These parameters are deliberately designed in the VCA to be tuneable for control
purposes. For example, a threshold valueFG for external excitations can be designed so that
when the amplitude of external excitations is below this threshold, the VCA will not take any
action, i.e.,b = 0. While the amplitude of external excitations is greater thanFG, the VCA will
clamp the structure’s response to a limit and transfer the vibration energy to itself. Solving the
equilibrium points of Eq. (12), the value of this threshold forceFG can be calculated as:

FG =
4

K2k

√

(σ2 + ζ2
k
ω2

k
)

[

1

4
(τ + σ)2 + ξ2

k
̟2

k

]

. (13)

This value can be determined experimentally by increasing the excitation forceFG until the
structural vibration amplitude is just acceptable. Then the feedback control gainK2k can be
designed according to the above equation. In order to keepFG small so that the corresponding
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vibration amplitude is small, the design parameterξk of VCA should be small.
The control force generated by the VCA can be obtained by substituting Eq. (9) into

Eq. (6) as:

fck(t) = K1kωk(ηk)
2 = K1kωk

b2

2
− K1kωk

b2

2
cos(Ωkt), (14)

where the second component of the right side of Eq. (14) represents a control force that can
equal the external excitation (fk cosΩkt) but with opposite phase.
When the VCA is not activated, i.e.,b = 0,

a =
fk

√

σ2 + ζ2
k
ω2

k

. (15)

When the VCA is activated, i.e.,b 6= 0,

a = 4

√

ξ2
k
̟2

k
+ 1

4
(τ + σ)2

K2k

, (16)

b =
4√

K1kK2k

{

[

τ + σ

2
σ − ζkωkξk̟k

]

±
[

K2
2k

f 2
k

16
− (

τ + σ

2
ζkωk + ξk̟kσ)2

]
1

2

}
1

2

(17)

It is clear from Eq. (16) that the amplitude of vibration in the structure is independent of the
amplitude of the external forcefk. This is because the excitation energy has been transferredto
the VCA controller and the structural vibration has been clamped.

4. EXPERIMENTAL STUDIES FOR THE VCA

A simple cantilever beam system was selected and used as a research vehicle to evaluate both
the QMPPF control strategy and the VCA controller. In the following studies, primary resonant
excitations are considered as they cause serious vibrations in the structure whenΩk = ωk. The
bending modal parameters of the beam system were determinedexperimentally using modal
testing method [15] and are shown in Table1. To verify the theoretical analyses, a physical

Table 1. Modal Characteristics of the Beam System

Characteristics Mode 1 Mode 2 Mode 3

Natural frequency (Hz) 11.4 68.5 149.8

Modal damping 0.0030 0.00002 ≈ 0

system was constructed to test the active structural vibration control system. The test system
comprises a250× 13× 0.6 mm mild steel beam with a strain gauge sensor and a piezoceramic
actuator patch, mounted on a 100N shaker. The output of the strain gauge is proportional to
the modal displacement on the point where the strain gauge isinstalled. The system was con-
trolled using a dSpace digital controller. A schematic diagram of the physical system is shown in
Fig.1(a). The physical cantilever beam system is shown in Fig.1(b) where the middle structures
are not in contact with the beam but used to support the signalcables.
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Figure 1. (a) Schematic of the controlled cantilever beam system. (b) The physical cantilever beam sys-
tem.

When the shaker’s frequency is tuned to 11.4Hz (i.e., the firstmode frequency) and the
acceleration produced by the shaker is1.2g, the first mode resonance causes large amplitude
vibrations with the beam’s tip displacement over 200 mm (peak to peak). After the vibration is
fully developed, the VCA controller is switched on at the 20th second time mark. Figs.2(a) and
2(b) show the experimental results of the structure’s first-mode time-response and the enlarged
part of (a) around the 24 second time mark, respectively. Theexperimental results confirm the
expected results from the theoretical analysis.
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Figure 2. Experimental results of the first-mode time-response under the VCA control: (a) the sensor
responsev1 and (b) zoomed part ofv1.

When the shaker’s frequency is tuned to 68.5Hz (i.e., the second mode frequency) and the
acceleration produced by the shaker is 1.0g, the second moderesonance causes large amplitude
vibrations. Figs.3(a) and3(b) show the experimental results of the structure’s second-mode
time-response and the enlarged part of (a) around the 11 second time mark, respectively. It can
be seen that the structural vibration has been successfullysuppressed even when the external
force frequency is at the second resonant frequency.

When the beam is excited under a multiple frequency sinusoidal excitation with frequen-
cies of 11.4Hz and 68.5Hz, and the acceleration produced by the shaker is 3.0g, the combined
resonances cause even larger amplitude vibrations. Fig.4(a) shows the experimental results of
the structure’s combined mode time-response around the 25 second time mark. It can be seen
that the structural vibration has been successfully suppressed even when the external force fre-
quencies are close to the first and second harmonics of the beam. The experimental results
further validate the theoretical analysis of multiple modecontrol. The Power Spectrum Density
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analysis of multiple mode vibration is shown in Fig.4(b). The suppression effect achieved by
the VCA can be more than 30dB.
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Figure 3. Experimental results of the second-mode steady-state time-response under the VCA control:
(a) the sensor responsev2 and (b) zoomed part ofv2.

5. CONCLUSIONS

The effectiveness of the VCA design based on the QMPPF strategy has been validated un-
der single-mode and multiple-mode control on a flexible cantilever beam system with a single
sensor and actuator pair. The experimental responses obtained from the physical system have
demonstrated that the VCA can be used to control multi-mode resonances in flexible structures.

It should be noted that the method used in the multiple mode control case is based on the
assumption that the structural natural frequencies are widely spaced and independent of each
other[3]. Under this assumption, the response of the system can be represented by a series of
SDOF systems. Therefore, the VCAs can be designed so that eachcontrols a different mode of
the system. If there is significant interaction between two modes[13], this assumption may be
invalid, in which case other control methods would be needed.
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Figure 4. Experimental results of the first- and second-mode time-response under the VCA control: (a)
the sensor response and (b)Power Spectral Density with and without theVCA control.
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