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Abstract

The randomness of the parameters such as Young’s modulbe tods factor of a mechanical
system can have considerable influence upon its responsgré&kent study aims at providing
an analytical method to evaluate the impact of this rand@siné/e focus on the frequency
response of a discrete vibrating system with separated snaag random damping. The prob-
abilistic method is based on normal modes with the Finitertelet Method. This new method
will be called the modal probabilistic analysis. This thelgads to the definition of an envelope
of the response. Then these envelopes are used to charatteriaw of probability that is gov-
erning the damping : this identification method is illustctising a vibrating system composed
of an Euler-Bernoulli beam.

1. INTRODUCTION

This paper presents a parametrical method for the studyeahfluence of a random damping,
upon the response of a multi degrees of freedom vibratingeydn the literature about random
mechanics]], people always try to adapt deterministic approachesdadklolution of systems
with uncertain parameters. For example in the non-paracaéapproach like in2, 3, 4, 5], the
assumptions upon the deterministic system condition théamness of the matrices involved
in the stochastic problem. That's all the more true for notneisive method like Monte-Carlo
simulations 6, 7], where the stochastic behavior of the system is evaluatdtut changing
anything in the deterministic one. There exist a lot of ottmethods together with their deriva-
tives [8]. The approach in the present paper has the same confideihesdsterministic model,
but proposes a direct analytical resolution.

The paper is organized as follows. Section 1 presents quibkl probabilistic description used
in the following. Section 2 describes the general methoeétas normal modes. Then in Sec-
tion 3 the analytical PDF and the expression of the first mdmare derived in the case of
a single mode. The definition of envelopes is extended to ety system withn degrees
of freedom in Section 4. An identification procedure to obtprobabilistic parameters from
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simulated experimental frequency response data is prdgonsgection 5.

2. MODAL PROBABILISTIC ANALYSIS

2.1. Description of the mechanical problem

Consider a discrete structure consistingroflegrees of freedom, arising for example from a
finite element discretization. Using Rayleigh’s approa@hf¢r homogeneous structures, the
mass matrixV and the stiffness matriK can be writtelM = m M, andK = kK, where

m andk are scalars ani,; andK, are matrices only depending on the discretization of the

k.
structure. Let) be the loss factor and,f = —,itcomes:
m

_ f

(—w2Md+w§(l+1n)Kd)u:E (1)
Assuming thaK ; is a definite positive matrix (this can be performed after@sipg boundary
conditions), it allows the co-diagonalization M, andK ;. Let ();, pj)j<n be the solution of
the eigenvalues problemdl;p;, = )\;Kyp,;. With P = Vect(p,), one ha®'M,P = I, and
pjTdej =)\, Vj<n.Asp andwfj are scalars, it is possible to write :

0 .- 0
0 —w? + Wi (1+1n) A, 0 [U=F
0 0

where U =P 'u et F = P‘lf—. U andF are the generalized displacements and exci-
tation vectors respectively. Themh Z HF whereH is the transfer function matrix, which is
diagonal of sizer x n.

Now consider that) is a random variable characterized by an absolute contmisw with
PDF (Probability Density Funstiory),. The aim of what follows is to study the effect of the
randomness af upon transfer functioi.

2.2. Probabilistic description

The fundamental assumption is that the modes are well deplatde system behaves like the
superposition of, elementary systems. This assumption is already made inetegndinistic
resolution with normal modes and it is also assumed in thbabiistic problem. The resolu-
tion of the probabilistic problem already exists for a sengegree-of-freedom oscillator with
random dampingJQ], this is why a direct extension is possible thanks to theassjon as-
sumption. AsH is a complex quantity, it has been decided to study respgtihe real part
ReH) and the imaginary part ¢, which are considered as functidns In the present case,
the calculation considetﬁ as a constant. So there is a single uncertain parametei vgtice
hysteretic damping.

In the present case, damping is considered as a random leaw@bse probability law is uni-
form. This choice allows one to control easily the value & garameter so that the physical
sense is preserved. Furthermore, the separation of eggprédncies of normal modes will be



preserved for damped ones.

It is possible to use another law of probability, but on ortieghe analytical aspect is lost very
quickly and on an other side the choice is always arbitragahee of the lack of knowledge
about the PDF of parameters. The identification method wisighroposed here relies on the
hypothesis of a uniform law because analytical results ban be used. The 100%-envelopes
are the basis of the identification method.

2.3. PDF and mean value

It is possible to calculate analytically the PDF of R¢@nd Im@H) on each mode, denoted
by freH,;) and fimn,,;) directly by supposing that the PDF gf(denotedf,) is a uniform law
(with mean value) and standard deviatian,). This allows one for calculating all moments of
Re®) and Im@H), especially the first one. The expressions of the mean sdtrehe ;" mode
are given thereafter.

The analytical expression fo* is :
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The analytical expression foi;™ is :

2 2, Ay2
4V/3w2 N0, —A2 + Nwly?

with A = —w? + w2  andY_ = 77— o, v3andY, = 7+ 0, V/3.
Then by using the assumption of well separated modes (fix@éd tdt is possible to derive the
mean value of the whole transfer function :

MPe =" M® and M = > M™

j=1 j=1

2.4. Envelopes definition

The following definition is given for ReH ;) but it is easy to extend this definition by a similar
way to Im(H,;).

Ra,Aj
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zero. Considety; anda, two probabilities and the se@ﬁlR“j 5%} satisfying :
/ si(e,A]- +181Re,>\j
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involving positive valuesir > and g5 . The (1 — a)%-envelope for RéH ;) is denoted by
Trex, and is defined as the complementary of the union of intervals :

o o RQ)\J‘ RQ)\J‘ Re,)\j Re,)\j
Trer, = U [51 + 0177, sy T = Py

w

3. APPLICATION TO A EULER-BERNOULLI CANTIVELER BEAM

3.1. Description

The Euler-Bernoulli approximation assumes that the lergjteach beam section is much
greater than the height of each section and the shear moduotlsotary inertia effects are
ignored. The governing equation of the flexural vibrationaofiniform Euler-Bernoulli can-
tilever beam of length L vibrating sinusoidally at circufeequencyw and excited by a forcé’

is given by :

E(1+1in)I 0*(z,w) I3

—w(r,w) + 5 P 5 (2
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Figure 1. Mean value Y and envelope) of Re(H) (a) and Im(H) (b) for the response
of system composed by a clamped-free beam arround the fidého= 5mm, 7 =
0.01, o, = 50%1, p = 2700kg/m3, E = 7T0M Pa.

. El . .
Posmgw§ =g and applying the Finite Element Method to the beam, equd#preturns to

equation 1). So results in Section 2 can be applied. The eigenvaluddenois solved with the
very efficient QZ-algorithm11].

In order to illustrate the results on the cantilever bears, rttean value together with 100%-
envelopes around the first mode are diplayed on figuiBvo observations can be made. The



first one, is that the mean value lies into the envelope, hbstribt centered. This comes from
the fact that the PDF is not centered (nor reduced). Whatrisiugoortant to notice is that this
analytical approach shows that at a resonance frequenbyyit 50%r, the response can be
5 times bigger that the mean value. This shows clearly theanpf the randomness on the
response and the need to identify correctly the parametelisipersion (here,, for an uniform
law). The second remark is that the envelope of ) isn’'t a "smooth" function ofv. This
comes from the fact that it is not injective regardingThis is an important point that can be
noticed on the figure and which has guided one of the idertiificanethod that is proposed
next.

4. |IDENTIFICATION

4.1. Presentation of the technique

Assuming that the parameter of interest is a specific dampopgverned by a uniform law, the
issue is to identifys, andj from experimental data, which as§®V, 5 <™ ands)™ A
which are the 100%-envelopes of R¢) and Im(H).

Lettingn, = 7+ /30, andn_ = 7 — /30, , equations of 100%-envelope for R¢) and

Im (H) lead to the following system :

( Tge,\j (14, w) = Re/\j ors Re/\.
T, (1w) = s orsR“

@9 T|(r]n7Aj(77+> w) = Im /\j ors |2m /\.
Tima, (11— w) = Im Yors I1m/\.

\ »Nj

There are 6 domains of frequency to distinguish, so theraetlly 6 differents systend (1)

to solve for a fixedv. These domains are determined by the resonance frequenufythe ;%"
mode and the inflexions of the 100%-envelope of Rg so there are 5 frequencies to evaluate
from the experimental values, which are noted graduajlyws, w,, ws andw, (with Iy, I, I,

1, I5 and I the corresponding intervals). The situation is explainedigure2.

4.2. Deterministic parameters identification

Before the identification of; ando,, it is natural to find the deterministic parameters, that
is the modal coefficien3; and the resonance frequeney. It is important to notice that the
system has no solution far € I, and /5. The resonance frequency. can be determined by
usual techniques ofs; >, s|™) or (s3>, s™) like the bandwidth method or by observing
the change of phase. Note that the determlnlstlc model iscbhasre on hysteretic damping,
so damping doesn't change eigenfrequencies. In the pressetonly hysterical damping is
supposed to be random, sp isn't random. That's why deterministic methods can be agapli
in order to find the resonance frequency. It is interestings®e also the envelopes to determine

the modal contributio3; with system 4.1), but in /, and/; there is no solution for the system.
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Figure 2. Frequency interval used to distinguish on(Rg (a) and Im(H) (b) in the
global identification method.

( (slgm’kjf + (ssekjf
Bj = A ReX, w € [1, I4
S2
N\ 2 N\ 2
Bj = A ReX, w € ]3, ]6
\ 89

with A = —w? + w2
4.3. |dentification methods

In what follows, two identification methods are presenteldeyl are based on the assumption
of separated modes, this is why a isolated mode is seleckedother important assumption is
the uniform law governing the loss factgrlt is in fact the identification of the support of the
distribution.

4.3.1. The specific method

This method is based on the evaluatiom@hnds'zm’kj (wy) = ta,. Itis called a specific method

because only theses two values together witland B; allow for the calculation of; ando;,.



Here are the formulas coming from the evaluatiowabf the upper envelope of IifH).

to, (W) —w3) — B
2152,7« w?
\/g t277~ (wf — w%) + B]
_? t27ru}3

4.3.2. The global method

The issue here is to understand how the 100%-envelopes @ Jifw) behave regarding_
andn, . Over intervald/; and /g, the upper envelope of IiH) corresponds tg, and the lower
one ton_. Over intervald; andly, it is the contrary : the upper envelope of (k) corresponds
ton_ and the lower one tg, . Over intervals/, andIs, the difficulty is that the lower envelope
of Im (H) doesn't correspond t@, neither tor_, but always to the value 1/2|A|. This is why
(4.2 has no solution ovek, and 5.

So the system(]) is solved separately over intervdlsand I then overl; and/,. In order to

. . - Re )\ Im,\; Re\; Im,\; .
simplify notations;z; = s7 7, t; = 577 andazy = sy 7, ty = 54 . PoSINg :

Q= \/B]?(t% +13) — 8t2A%Z + 2152151\/3;l + 16t§ A%t3 — 4B A2(t] + t3)
The following formulas give; ando,, :

_4Bj(tl+t2)+4Q 4Bj(t1+t2)—4@

= fl = —
2 2
OverI; andlg : 16tat1wy and overl; andly : 16tat1wy
o = 1 BjV/3(ta — t1) o = 7 BjV3(ta — t1)
! Q ! Q
Depending on the frequency, there are several calculatomoarry out in each interval, except ip and

Is.
4.3.3. Comments about identification methods

In both identification methods, it has been considered tieat0%-envelope is an input datum. A uni-
form law for hysteretical damping has been supposed, which enables one to identify the supitbr
PDF, ien ando,,. Note that the same method can be used with a different lathéodamping as soon as
the direct analytical problem has been solved.

The specific method is easier to apply, but only relies onetivadues, whereas the global method pro-
vides a set of values that can be compared in order to elimih&t chaotic ones. This point leads to the
major problem of these resolutions, which is the deternonadf the "experimental” 100%-envelope.
Statistic tests would allow experimentators to decide wtherfexperimental” 100%-envelope is known.
The question of the number of measurements which are negdesaach the envelope is quite difficult.
It refers to the avalaible information and for vibro-aceasheasurements, the following remarks apply.
Usually, whatever measurement at a point of a experimeatas she mean value of a series of measure-
ments. It would be more interesting to keep all the measuadeg than only the mean value, because
the dispersion aspect is lost.



5. CONCLUSION

The purpose of the present work was to illustrate the modabadrilistic analysis. The random flexural
response of a cantilever Euler-Bernouilli beam with randorsteretic damping has been calculated us-
ing FEM and modal expansion. Firstly, the first moments ofrte# and imaginary parts of the transfer
function together with its envelopes have been calculatetie case of a uniform damping PDF. This
approach is very efficient numerically since analyticalresgions are available to determine the param-
eters associated to the response probability law.

Secondly, an identification procedure based on the knowledithe 100%-enveloppe has been proposed.
It allows for the determination of the damping PDF paranget€&he greatest difficulty is the experimen-
tal determination of the 100%-envelope experimentally sl refers to the problem of the available
information.

It must be pointed out that theses formulas are a first stelpeindentification from experimental data,
and can not be exploited directly at this stage. In realifg, very important to consider that the resonance
frequency is random too. In the present model, it means tigegigenvalue\; and the stiffness are also
random parameters.

The future prospects of the present work are to proceed witkxperimental identification. In order to
reach relevant results, it is very important to solve thebfgm with two parameters, which are damping
and the resonance frequency. The resonance frequency ésappropriate than stiffness because this is
a physical value than can be directly determined experiaignt

The extension of the approach to two parametersraB®F sytems would provide a tool to solve many
physical problems with random parameters. The modal pibsi@banalysis also needs to deal with non
well separated modes.
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