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Abstract

The randomness of the parameters such as Young’s modulus or the loss factor of a mechanical
system can have considerable influence upon its response. The present study aims at providing
an analytical method to evaluate the impact of this randomness. We focus on the frequency
response of a discrete vibrating system with separated modes and random damping. The prob-
abilistic method is based on normal modes with the Finite Element Method. This new method
will be called the modal probabilistic analysis. This theory leads to the definition of an envelope
of the response. Then these envelopes are used to characterize the law of probability that is gov-
erning the damping : this identification method is illustrated using a vibrating system composed
of an Euler-Bernoulli beam.

1. INTRODUCTION

This paper presents a parametrical method for the study of the influence of a random damping,
upon the response of a multi degrees of freedom vibrating system. In the literature about random
mechanics [1], people always try to adapt deterministic approaches to the resolution of systems
with uncertain parameters. For example in the non-parametrical approach like in [2, 3, 4, 5], the
assumptions upon the deterministic system condition the randomness of the matrices involved
in the stochastic problem. That’s all the more true for non-intrusive method like Monte-Carlo
simulations [6, 7], where the stochastic behavior of the system is evaluated without changing
anything in the deterministic one. There exist a lot of othermethods together with their deriva-
tives [8]. The approach in the present paper has the same confidence isthe deterministic model,
but proposes a direct analytical resolution.
The paper is organized as follows. Section 1 presents quickly the probabilistic description used
in the following. Section 2 describes the general method based on normal modes. Then in Sec-
tion 3 the analytical PDF and the expression of the first moments are derived in the case of
a single mode. The definition of envelopes is extended to a vibrating system withn degrees
of freedom in Section 4. An identification procedure to obtain probabilistic parameters from
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simulated experimental frequency response data is proposed in Section 5.

2. MODAL PROBABILISTIC ANALYSIS

2.1. Description of the mechanical problem

Consider a discrete structure consisting ofn degrees of freedom, arising for example from a
finite element discretization. Using Rayleigh’s approach [9] for homogeneous structures, the
mass matrixM and the stiffness matrixK can be writtenM = m M d andK = k K d, where
m andk are scalars andM d andK d are matrices only depending on the discretization of the

structure. Letη be the loss factor andω2
p =

k

m
, it comes :

(

−ω2 M d + ω2
p(1 + i η) K d

)

u =
f̂
m

(1)

Assuming thatK d is a definite positive matrix (this can be performed after imposing boundary
conditions), it allows the co-diagonalization ofM d andK d. Let

(

λj , pj

)

j≤n
be the solution of

the eigenvalues problemM d pj = λj K d pj. With P = Vect(pj), one hasP−1M dP = In and
pT

j K dpj = λj ∀j ≤ n. As η andω2
p are scalars, it is possible to write :









. . . · · · 0 · · · · · · 0

0 · · · −ω2 + ω2
p (1 + i η) λj · · · 0

0 · · · · · · 0 · · · . . .









U = F

where U = P−1u et F = P−1 f̂
m

. U andF are the generalized displacements and exci-

tation vectors respectively. ThenU = H F whereH is the transfer function matrix, which is
diagonal of sizen × n.
Now consider thatη is a random variable characterized by an absolute continuous law with
PDF (Probability Density Funstion)fη. The aim of what follows is to study the effect of the
randomness ofη upon transfer functionH.

2.2. Probabilistic description

The fundamental assumption is that the modes are well separated. The system behaves like the
superposition ofn elementary systems. This assumption is already made in the deterministic
resolution with normal modes and it is also assumed in the probabilistic problem. The resolu-
tion of the probabilistic problem already exists for a single degree-of-freedom oscillator with
random damping [10], this is why a direct extension is possible thanks to the separation as-
sumption. AsH is a complex quantity, it has been decided to study respectively the real part
Re(H) and the imaginary part c, which are considered as functionsof η. In the present case,
the calculation considersω2

p as a constant. So there is a single uncertain parameter, which is the
hysteretic dampingη.
In the present case, damping is considered as a random variable whose probability law is uni-
form. This choice allows one to control easily the value of the parameter so that the physical
sense is preserved. Furthermore, the separation of eigenfrequencies of normal modes will be
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preserved for damped ones.
It is possible to use another law of probability, but on one side the analytical aspect is lost very
quickly and on an other side the choice is always arbitrary because of the lack of knowledge
about the PDF of parameters. The identification method whichis proposed here relies on the
hypothesis of a uniform law because analytical results can then be used. The 100%-envelopes
are the basis of the identification method.

2.3. PDF and mean value

It is possible to calculate analytically the PDF of Re(H) and Im(H) on each modej, denoted
by fRe(Hjj) andfIm(Hjj) directly by supposing that the PDF ofη (denotedfη) is a uniform law
(with mean valuēη and standard deviationση). This allows one for calculating all moments of
Re(H) and Im(H), especially the first one. The expressions of the mean values for thej th mode
are given thereafter.
The analytical expression forMRe,j

1 is :

M
Re,j
1 =

sign(A)

2
√

3ω2
pλjση

(

arcsin

(−A2 + λ2
jω

4
pY

2
−

A2 + λ2
jω

4
pY

2
−

)

− arcsin

(−A2 + λ2
jω

4
pY

2
+

A2 + λ2
jω

4
pY

2
+

))

The analytical expression forM Im,j
1 is :

M
im,j
1 =

1

4
√

3ω2
pλjση

ln

(−A2 + λ2
jω

4
pY

2
+

−A2 + λ2
jω

4
pY

2
−

)

with A = −ω2 + ω2
pλj andY− = η̄ − ση

√
3 andY+ = η̄ + ση

√
3.

Then by using the assumption of well separated modes (fixed toN), it is possible to derive the
mean value of the whole transfer function :

MRe
1 =

N
∑

j=1

M
Re,j
1 and M Im

1 =

N
∑

j=1

M
Im,j
1

2.4. Envelopes definition

The following definition is given for Re(Hjj) but it is easy to extend this definition by a similar
way to Im(Hjj).

Let’s defines
Re,λj

1 ands
Re,λj

2 by
∫ s

Re,λj
2

s
Re,λj
1

fRe(Hjj)(s) ds = 1. Outside[s
Re,λj

1 ,sRe,λj

2 ], fRe(Hjj) is

zero. Considerα1 andα2 two probabilities and the set{βRe,λj

1 , β
Re,λj

2 } satisfying :






























∫ s
Re,λj
1

+ β
Re,λj
1

s
Re,λj
1

fRe(Hjj)(s) ds = α1

∫ s
Re,λj
2

s
Re,λj
2

− β
Re,λj
2

fRe(Hjj)(s) ds = α2

α1 + α2 = α
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involving positive valuesβRe,λj

1 andβ
Re,λj

2 . The(1 − α)%-envelope for Re(Hjj) is denoted by
Υα

Re,λj
and is defined as the complementary of the union of intervals :

Υα
Re,λj

=
⋃

ω

[

s
Re,λj

1 + β
Re,λj

1 , s
Re,λj

2 − β
Re,λj

2

]

3. APPLICATION TO A EULER-BERNOULLI CANTIVELER BEAM

3.1. Description

The Euler-Bernoulli approximation assumes that the lengthof each beam section is much
greater than the height of each section and the shear modulusand rotary inertia effects are
ignored. The governing equation of the flexural vibration ofa uniform Euler-Bernoulli can-
tilever beam of length L vibrating sinusoidally at circularfrequencyω and excited by a forceF
is given by :

− ω2 v̂(x, ω) +
E(1 + iη)I

ρS

∂4v̂(x, ω)

∂x4
=

F̂

ρS
(2)
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Figure 1. Mean value (-) and envelope (+) of Re(H) (a) and Im(H) (b) for the response
of system composed by a clamped-free beam arround the first mode.h = 5mm, η̄ =

0.01, ση = 50% η̄, ρ = 2700kg/m3, E = 70MPa.

Posingω2
p =

EI

ρS
and applying the Finite Element Method to the beam, equation(2) returns to

equation (1). So results in Section 2 can be applied. The eigenvalues problem is solved with the
very efficient QZ-algorithm [11].
In order to illustrate the results on the cantilever beam, the mean value together with 100%-
envelopes around the first mode are diplayed on figure1. Two observations can be made. The
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first one, is that the mean value lies into the envelope, but itis not centered. This comes from
the fact that the PDF is not centered (nor reduced). What is very important to notice is that this
analytical approach shows that at a resonance frequency with ση = 50%η̄, the response can be
5 times bigger that the mean value. This shows clearly the impact of the randomness on the
response and the need to identify correctly the parameters of dispersion (hereση for an uniform
law). The second remark is that the envelope of Im(H) isn’t a "smooth" function ofω. This
comes from the fact that it is not injective regardingη. This is an important point that can be
noticed on the figure and which has guided one of the identification method that is proposed
next.

4. IDENTIFICATION

4.1. Presentation of the technique

Assuming that the parameter of interest is a specific dampingη governed by a uniform law, the
issue is to identifyση and η̄ from experimental data, which aresRe,λj

1 , s
Re,λj

2 , s
Im,λj

1 ands
Im,λj

2 ,
which are the 100%-envelopes of Re(H) and Im(H).
Letting η+ = η̄ +

√
3ση andη− = η̄ −

√
3ση , equations of 100%-envelope for Re(H) and

Im (H) lead to the following system :

(4.1)



























Υ 0
Re,λj

(η+, ω) = s
Re,λj

1 orsRe,λj

2

Υ 0
Re,λj

(η−, ω) = s
Re,λj

2 orsRe,λj

1

Υ 0
Im,λj

(η+, ω) = s
Im,λj

1 orsIm,λj

2

Υ 0
Im,λj

(η−, ω) = s
Im,λj

2 orsIm,λj

1

There are 6 domains of frequency to distinguish, so there areactually 6 differents system (4.1)
to solve for a fixedω. These domains are determined by the resonance frequencyωr of thej th

mode and the inflexions of the 100%-envelope of Re(H), so there are 5 frequencies to evaluate
from the experimental values, which are noted graduallyω1, ω2, ωr, ω3 andω4 (with I1, I2, I3,
I4, I5 andI6 the corresponding intervals). The situation is explained on figure2.

4.2. Deterministic parameters identification

Before the identification of̄η and ση, it is natural to find the deterministic parameters, that
is the modal coefficientBj and the resonance frequencyωr. It is important to notice that the
system has no solution forω ∈ I2 andI5. The resonance frequencyωr can be determined by
usual techniques on(sRe,λj

1 , s
Im,λj

1 ) or (s
Re,λj

2 , s
Im,λj

2 ) like the bandwidth method or by observing
the change of phase. Note that the deterministic model is based here on hysteretic damping,
so damping doesn’t change eigenfrequencies. In the presentcase only hysterical damping is
supposed to be random, soωr isn’t random. That’s why deterministic methods can be applied
in order to find the resonance frequency. It is interesting touse also the envelopes to determine
the modal contributionBj with system (4.1), but inI2 andI5 there is no solution for the system.
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Figure 2. Frequency interval used to distinguish on Re(H) (a) and Im(H) (b) in the
global identification method.































Bj = A

(

s
Im,λj

2

)2

+
(

s
Re,λj

2

)2

s
Re,λj

2

ω ∈ I1, I4

Bj = A

(

s
Im,λj

1

)2

+
(

s
Re,λj

2

)2

s
Re,λj

2

ω ∈ I3, I6

with A = −ω2 + ω2
r .

4.3. Identification methods

In what follows, two identification methods are presented. They are based on the assumption
of separated modes, this is why a isolated mode is selected. The other important assumption is
the uniform law governing the loss factorη. It is in fact the identification of the support of the
distribution.

4.3.1. The specific method

This method is based on the evaluation ofω2 ands
Im,λj

2 (ωr) = t2, r. It is called a specific method
because only theses two values together withωr andBj allow for the calculation of̄η andση.
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Here are the formulas coming from the evaluation atωr of the upper envelope of Im(H).

η̄ =
t2, r (ω2

r − ω2
2) − Bj

2 t2, r ω2
r

ση = −
√

3

6

t2, r (ω2
r − ω2

2) + Bj

t2, r ω2
r

4.3.2. The global method

The issue here is to understand how the 100%-envelopes of Im(H) (ω) behave regardingη−
andη+. Over intervalsI1 andI6, the upper envelope of Im(H) corresponds toη+ and the lower
one toη−. Over intervalsI3 andI4, it is the contrary : the upper envelope of Im(H) corresponds
to η− and the lower one toη+. Over intervalsI2 andI5, the difficulty is that the lower envelope
of Im (H) doesn’t correspond toη+ neither toη−, but always to the value−1/2|A|. This is why
(4.1) has no solution overI2 andI5.
So the system (4.1) is solved separately over intervalsI1 andI6 then overI3 andI4. In order to
simplify notations,x1 = s

Re,λj

1 , t1 = s
Im,λj

1 andx2 = s
Re,λj

2 , t2 = s
Im,λj

2 . Posing :

Q =

√

B2
j (t

2
1 + t22) − 8t21A

2t22 + 2t2t1

√

B4
j + 16t21A

4t22 − 4B2
j A

2(t21 + t22)

The following formulas givēη andση :

OverI1 andI6 :



















η̄ = −4Bj(t1 + t2) + 4Q

16 t2t1ω2
r

ση = η̄
Bj

√
3(t2 − t1)

Q

and overI3 andI4 :



















η̄ = −4Bj(t1 + t2) − 4Q

16 t2t1ω2
r

ση = η̄
Bj

√
3(t2 − t1)

Q

Depending on the frequency, there are several calculationsto carry out in each interval, except inI2 and
I5.

4.3.3. Comments about identification methods

In both identification methods, it has been considered that the100%-envelope is an input datum. A uni-
form law for hysteretical dampingη has been supposed, which enables one to identify the supportof the
PDF, ieη̄ andση. Note that the same method can be used with a different law forthe damping as soon as
the direct analytical problem has been solved.
The specific method is easier to apply, but only relies on three values, whereas the global method pro-
vides a set of values that can be compared in order to eliminate the chaotic ones. This point leads to the
major problem of these resolutions, which is the determination of the "experimental" 100%-envelope.
Statistic tests would allow experimentators to decide whenthe "experimental" 100%-envelope is known.
The question of the number of measurements which are necessary to reach the envelope is quite difficult.
It refers to the avalaible information and for vibro-acoustic measurements, the following remarks apply.
Usually, whatever measurement at a point of a experimental set is the mean value of a series of measure-
ments. It would be more interesting to keep all the measured values than only the mean value, because
the dispersion aspect is lost.
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5. CONCLUSION

The purpose of the present work was to illustrate the modal probabilistic analysis. The random flexural
response of a cantilever Euler-Bernouilli beam with randomhysteretic damping has been calculated us-
ing FEM and modal expansion. Firstly, the first moments of thereal and imaginary parts of the transfer
function together with its envelopes have been calculated in the case of a uniform damping PDF. This
approach is very efficient numerically since analytical expressions are available to determine the param-
eters associated to the response probability law.
Secondly, an identification procedure based on the knowledge of the 100%-enveloppe has been proposed.
It allows for the determination of the damping PDF parameters. The greatest difficulty is the experimen-
tal determination of the 100%-envelope experimentally andthis refers to the problem of the available
information.
It must be pointed out that theses formulas are a first step in the identification from experimental data,
and can not be exploited directly at this stage. In reality, it is very important to consider that the resonance
frequency is random too. In the present model, it means that the eigenvalueλj and the stiffnessk are also
random parameters.
The future prospects of the present work are to proceed with an experimental identification. In order to
reach relevant results, it is very important to solve the problem with two parameters, which are damping
and the resonance frequency. The resonance frequency is more appropriate than stiffness because this is
a physical value than can be directly determined experimentaly.
The extension of the approach to two parameters andn DOF sytems would provide a tool to solve many
physical problems with random parameters. The modal probabilistic analysis also needs to deal with non
well separated modes.
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