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Abstract 
This paper examines the influence of the internal resistance of a Helmholtz resonator on the 
noise control in a small enclosure. The absorptive process mainly occurring within the neck 
of a Helmholtz resonator provides the resonator with a damping (internal resistance) property, 
which directly dissipates the input energy in the resonator. The remaining non-dissipated 
energy is re-radiated back to the enclosure, such forming an effective secondary sound source, 
and resulting in acoustic interaction with the primary source. If the internal resistance of the 
resonator is low, the acoustic interaction between the enclosure and the resonator sharply 
splits the targeted resonance peak of the enclosure into two parts, and the peak response is 
significantly attenuated within a very narrow frequency band. By appropriately increasing the 
internal resistance at the resonance of the resonator, the working bandwidth can be enlarged 
at the expense of sacrificing the control performance due to the decreased amplitude.  
However, if the resistance is over-increased, the strength of volume velocity out of the 
resonator aperture becomes too low; compromising the effective acoustic interaction with the 
enclosure and resulting in insignificant control at the targeted resonance peak. In this paper, a 
mathematical model describing the acoustic interaction of a resonator and a small enclosure 
is presented.  An analytical solution is obtained on the pressure field inside the enclosure 
and the radiation of the resonator.  Based on the analytical solutions, an energy reduction 
index describing the strength of acoustic interaction in the enclosure with a resonator is 
defined.  Series of numerical simulations are conducted to illustrate the influence of the 
internal resistance on the energy reduction and on the dissipated and re-radiated energy.  
Finally, the optimal internal resistance is obtained.  Experimental results using one resonator 
are also carried out and compared with simulation results. 
 

I. INTRODUCTION 
 
Low frequency noise inside small enclosures always has always been a concern in many 
engineering problems.  Active noise control is a promising approach in low-frequency noise 
controls.  However, its cost of implementation, robustness of the control system and the 
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requirement of a large space hamper its application in small enclosures. Passive techniques 
such as Helmholtz resonators still show many appealing features in terms of implementation, 
control quality and cost effectiveness. 

The acoustic interaction between an enclosure and with Helmholtz resonators has been 
extensively investigated in the past. Fahy and Schofield [1] built an advanced model to 
explore some underlying physics of the resonator.  The experimental results on internal 
resistance [1] showed that there exists an optimal damping value when other parameters were 
fixed. With a view to broaden the application of resonators, Cummings [2] extended Fahy and 
Schofield’s single resonator and single room mode model to multiple resonator coupled with 

multi room-mode. In his multi-mode model, resonators were taken as pseudo point sources. 
In order to solve the singularity problem caused by point source, the sound pressure of that 
pseudo point source at its own location was calculated by the averaged sound pressure at the 
surface of a small equivalent pulsating sphere. Li and Cheng [3] recently proposed a new 
model to analyze the interaction between acoustic resonator array and a room with multiple 
modes.  In that work, the resonator was treated as a point source with volume velocity 
influenced by enclosure. Instead of building the linear equation at the aperture of resonators, 
they considered the acoustic equilibrium in the volume of room to avoid the singularity 
problem previously encountered when the linear equation set was solved. By comparing the 
theoretical results with experimental results, the model shows very good approximation to 
real multi-mode setup.  

Despite the consistent effort that was made in Helmholtz resonator design, researchers 
are still looking into approaches to improve the noise control performance using a Helmholtz 
resonator array, which involves heavy experimental measurements on a trial-and-error basis. 
This paper presents a systemic design tool to optimize the internal resistance of a Helmholtz 
resonator. It is divided into four sections. The mathematical model of acoustic interaction 
between an enclosure and one single resonator, the theory of energy optimization, and 
investigation of the internal resistance of the resonator are presented in Section II.  Section 
III gives numerical and experimental results to examine the internal resistance of resonators. 
Finally, conclusions for optimal design of a resonator are presented in Section IV. 

 
II. THEORY 

 
A general model for describing the acoustic interaction between an enclosure and only one 
Helmholtz resonator is presented, and then, the energy optimization theory is given. Formulas 
of dissipated energy and radiated energy by an acoustic resonator, which depends on the 
internal resistance of the resonator, are derived.  Throughout the paper, the superscripts and 
subscripts E, R, and S indicate the variables associated with “Enclosure”, “Resonator”, and 
“Source”, respectively. 
 
A. Acoustic interaction between an enclosure and a single Helmholtz resonator 
 
The inhomogeneous wave equation governing the pressure field in the enclosure reads: 
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where p(r, t) is the acoustic pressure, q is the volume velocity source strength density 
distribution in the volume and surface of the enclosure. Assuming that a set of N harmonic 

sources with volume velocity source strength density qS
1 1

Sq , , …, 2
Sq S

Nq  are located at the 

points , , …, 1
Sr 2

Sr S
Nr  form the primary sound field in the enclosure, and the single 

resonator with volume velocity source strength density qR centered at the point rR (center of 
the resonator aperture) forms the secondary sound field in the enclosure. Notice that the 
volume velocity directed out of the resonator has the same sign as that of the primary sound 
source, i.e., the positive sign is directed out off the source into the enclosure. The volume 
velocity source strength density out of the acoustic resonator is computed from qR(t)= 
p(rR,t)/Z, in which Z is defined as the output acoustic impedance at the aperture of the 
resonator , and p(rR,t) is the sound pressure at rR provided that the largest dimension of the 
resonator aperture is much smaller than the sound wavelength of interest, equation (1) 
becomes  
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where δ(r-rR ) is a three dimensional Dirac delta function.. 
Acoustic pressure p(r,t) can be decomposed on the basis of eigenfunctions of the 

enclosure: p(r,t)=ΣΨj(t)φj(r),Ψj(t) is the jth modal response, and φj(r) is the jth 
eigenfunction. Substituting this modal expansion into Eq. (2) and applying orthogonality 
properties of the eigenfunctions yield a discrete acoustic equation 
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where z0=ρ0c; z0 is the characteristic impedance of the fluid, VE is the volume of the 

enclosure, jΛ  is the mode normalization factor, given by 
2

( )j jV
dV Vϕ⎡ ⎤Λ = ⎣ ⎦∫ r , 

( )S
j nϕ r is the averaged ( )S

j nϕ r over the volume of the nth source (first source), and E
jγ  is the 

jth eigenvalue of the enclosures, which holds on the homogeneous wave equation. The 

eigenvalue can be expressed as E E E
j j iCγ ω= + j

i t

, in which the real part is the angular 

frequency and the imaginary part is an equivalent ad hoc damping coefficient. 
Assuming all time dependent variables are harmonic, i.e. Ψj(t)=Phe

iωt and 

( )S S
n nq t Q e ω= , then, in the absence of the resonators, the modal response Pj can be solved 

from Eq. (3) as 
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When a resonator is installed, the modal response of Pj can be solved from Eq. (3) as 
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The first term on the right hand side of Eq. (5) is the contribution coming from the primary 
sound field, and the second term is the effect of inserting an acoustic resonator into the 
enclosure.  
  
B. Energy optimization  
 
When inserting a designed resonator to target a resonance peak of the enclosure, two new 
coupled frequencies were produced on the either side of original resonance frequency [1].  It 
is hard to carry out parameters’ optimizations of resonator by selecting just a single frequency 
as control target since the presence of those two new coupled frequencies. It is necessary to 
involve major frequency components around the resonance peak [4] for optimizations of 
resonator. To this end, energy in a frequency band is determined as the objective function for 
the optimization of resonator location and damping. The theory of the energy optimization is 
derived as below. 

By using p(r,t)=∑Ψj(t)φj(r) andΨj(t)=Phe
iωt, the energy within a bandwidth [ω1,ω2] 

is calculated based on spatially averaged mean-square pressure :  
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where Δω is the numerical integration step. The energy reduction is defined as the ratio of 
energy level ER[ω1,ω2]with resonator to that E0[ω1,ω2] without resonator. 
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whereωi varies in bandwidth[ω1,ω2]. If local noise control is expected, a small V around 
this region can be selected to calculate ER[ω1,ω2]. However, if global noise control is 
expected, the whole enclosure volume should be selected for the calculation of ER[ω1,ω2].  
 
C. Damping optimization for Helmholtz resonators 
 
As mentioned before, inserting a lightly damped resonator into a lightly damped enclosure 
can split the controlled harmonic peak to two peaks. In order to enlarge the working 
bandwidth of a resonator, damping material is introduced to abase those harmonic peaks 
between the two coupled frequencies. However, excessive damping is not effective, as 
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reported in reference [1]. Therefore, there exists an optimal damping to implement optimal 
control performance of a resonator. 

The optimization of internal resistance will be carried out based on the energy reduction 
described in Eq. (7). When the internal resistance of the inserted resonator varies, the modal 

response R
jP of enclosure varies, correspondingly. Two important types of energy, dissipated 

energy and radiated energy by resonator, are the key parameters to evaluate the control 
performance of a resonator, which are influenced by resonator resistance. Firstly, the 
relationship between dissipated energy and resistance is investigated. 

The motion of lumped mass in the resonator neck follows the Newton’s second law:  
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where x(t) is the particle displacement in the resonator neck, which is assumed positive when 
it points to the enclosure, and VR the body volume of resonator, SR the cross sectional area of 
the neck, LR the effective neck length, and R the internal resistance. 

Assuming the movement of this lumped mass is a harmonic variable, namely x(t)=Xeiωt 
and considering the decomposition of pressure based on mode shape function shown above, 
the amplitude of displacement is solved from Eq. (8) as: 
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Because energy is defined in a bandwidth [ω1,ω2], parameters used to calculate energy 
must be mean square values in the same band. Thus, based on Eq. (9), the mean square 
velocity in this band can be given as: 
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By using the definition of mean square velocity in a band in Eq. (10), the averaged 
dissipated energy of a resonator in the band [ω1,ω2] is: 
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where Ri=z0LRR is the specific acoustic resistance of a resonator. 
After discussing the dissipated energy by a resonator, the influence of damping effects 

on the sound field radiated by a resonator will be investigated as the follows. Since sound 
pressure in the enclosure is the summation of the primary and secondary sources formed by 
the inserted resonator, the sound pressure radiated from the resonator can be directly analyzed 
when the primary field source is turned off. Assuming that the sound source velocity strength 
of primary source is zero, and the lumped mass in the neck of resonator vibrates with the 
displacement x(t)=Xeiωt [X can be calculated by Eq. (9)], the modal response is calculated by:  
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where Ph is calculated by Eq. (5). Substituting (Pj)only_resonator  into Eq. (6), the space averaged 
energy radiated only by a resonator can be calculated. 

 
III. NUMERICAL SIMULATIONS AND EXPERIMENTS 

 
Numerical simulations on internal resistance are conducted in the following. The coupling 
model between the enclosure and a resonator has been previously validated [3]. One room, 
with dimensions lx=1 m, ly=0.7 m and lz=1.22 m, was used as enclosure for experiments and 
simulations. All physical parameters used are tabulated in TABLE I. Numerically 216 
enclosure modes are used in modal superposition. Natural frequencies with damping are 

calculated by formula E E
j j iCγ ω= + j , in which the real part ωj is the angular frequency of the 

jth enclosure mode without damping and the image part is the jth ad hoc damping 

coefficient 2E
j jC ω= jQ . Qj is set to 56 for the rigid mode (000) and 46 for other modes. The 

eigenfunctions φj(rR) of the enclosure for thermalviscous boundary conditions were presented 
in reference [2]. One square source with dimensions of 100 mm in the x- and y-directions and 
zero in z-direction was located at (100, 55, 1) mm to drive the first sound field. One Brüel & 
Kjær Type 4189 ½” microphone located at (0.84, 0.03, 1.06) m was used to measure SPL in 
the enclosure.  

TABLE I. Physical parameters 
Physical parameter value 

Ambient temperature, T (oC) 15 
Speed of sound, c (m/s) 340.3 

Density of air, ρ 0 (kg/m3) 1.2 
Specific heat ratio of air, γ 1.402 

Thermal conductivity of air, κ [W/(m·K)] 0.0263 
Specific heat at constant pressure of the air , Cp [J/(kg·K)] 1.01×103

Coefficient of shear viscosity, µ (Pa.·s) 1.85×10-5

For optimization of internal resistance, mode (101) was selected as targeted mode. The 
calculated resonance frequency for this mode is 219.8Hz and the experimental value is 224Hz. 
A Helmholtz resonator was designed to target this mode and fixed at (0.1, 0.3, 0) m. The 
internal diameter of its neck is 21mm and the physical neck length is 58mm. The internal 
diameter and length of its body are 74mm and 67mm, respectively. The optimization 
frequency band was from 200Hz to 240Hz. The Q-factor of the resonator was varied from 1 
to 100, corresponding to a variation range of the resistance R from 1.15 to 115.21 mks Rayls. 
The energy reduction was calculated by Eq. (7) with different damping values. The dissipated 
energy was calculated by Eq. (11). The radiated energy was calculated by Eq. (6). 

FIG.1(a) shows the variation of energy reduction versus the internal resistance. When 
the resistance R is equal to 4.11 mks Rayls, the energy reduction in the enclosure reaches the 
maximum value 2.314 dB. Thus this resistance is the optimal one based on the energy 
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approach. FIG.1(b) shows the variation of radiated energy from the resonator and FIG.1(c) 
shows the energy dissipated by resonator.  It is obvious that the variation tendency in 
FIG.1(c) is similar to that in FIG.1(a). Therefore, the influence of resonator resistance on the 
energy reduction in enclosure is dominated by the dissipation ability of resonator.  From FIG. 
1(a, b, c), it is observed that when the resistance is much small, the radiation from the 
resonator is efficient and the dissipated energy is very small. Therefore, more energy is 
returned back to the enclosure from the resonator aperture at this circumstance. With the 
increase of resistance, more sound energy is dissipated by the resonator and the radiated 
energy is small. However, both the dissipated energy and radiation energy decreases after the 
internal resistance of the resonator increases over the optimal value. 

 

  
FIG.1. (a) Energy reduction in enclosure measured at (0.84, 0.03, 1.06) m; (b) Radiated energy by 
resonator; (c) Dissipated energy by resonator. 

FIG. 2 shows the experimental results in terms of sound pressure level (SPL) at the 
microphone position (0.84, 0.03, 1.06) m when resonator resistances are equal to 3.6 and 18.2 
mks Rayls. The resonator resistance 3.6 mks Rayls is near the simulated optimal resistance 
4.11 mks Rayls, and a large SPL reduction up to 6.9dB at 224Hz was observed. A control 
over the off-target frequency in a relatively broadband is also obtained from FIG. 2 since the 
resonator is coupled with all enclosure modes. The internal resistance 18.2 mks Rayls, much 
larger than the optimal resistance, results in a very low vibrating velocity of the lumped mass 
inside the resonator neck and subsequently lower energy dissipation inside the enclosure and 
low radiated energy out of the resonator aperture. Only a 0.66dB SPL reduction at 224Hz was 
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obtained when the internal resistance of the resonator is 18.2 mks Rayls. 

 
FIG.2. SPL curves at (1.0.84, 0.02, 1.06) m. Experiment: without resonator —; with a damped 
resonator r = 3.6 mks Rayls — —; with a damped resonator, r = 18.2 mks Rayls.— · —.  
 

IV. CONCLUSIONS 
 

A theoretical method for the optimal design of a Helmholtz resonator 
internal-resistance is presented based on the maximization of energy reduction. Numerical 
results show that the dissipated energy dominates the control performance of the resonator (a 
good cutoff between the peak reduction and the resonator working bandwidth), which greatly 
depends on both the internal resistance in the resonator neck and the vibrating velocity of the 
lumped mass in the neck. A large vibrating velocity of the lumped mass (when the internal 
resistance is small) can provide a large re-radiation volume velocity, which reacts to the 
primary sound field to sharply reduce the targeted peak by means of acoustic interaction. The 
measured results show that the optimally designed internal resistance can provide a better 
control performance for the resonator. Using a Helmholtz resonator with an optimal internal 
resistance, a SPL reduction up to 6.9dB was obtained around the targeted resonance with 15 
Hz bandwidth. 
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