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Abstract 
 
This paper deals with the linear dynamic response of a cracked cantilever beam subjected to a 
moving mass. The velocity of the moving mass is assumed to be constant. The present 
analysis in its general form may well be applied to beams with various boundary conditions. 
Results from the numerical solutions of the differential equations of motion are shown 
graphically. Moreover, when considering the maximum deflection for the end point of the 
beam, the critical speeds of the moving mass have been evaluated. Experiments have been 
conducted to compare with the numerical results. It is observed that the experimental results 
are in good agreement with the numerical one. 

1. INTRODUCTION 

 
The general problem of transverse vibrations of beams resulting from the passage of moving 
loads (moving forces and moving masses) is of considerable practical interest in the dynamics 
of structures. It has a wide range of applications in many fields, from structural to mechanical 
to aerospace. This problem has been studied in the context of machinery operations and the 
behavior of bridges, runways, rails, roadways, pipelines, etc. In order to recognize when the 
structure is approaching an over stressed condition, it is necessary to understand the 
complexity of the dynamic interaction between the continuous system and the sub-system 
moving on it. A complete analysis must also take into account the presence of existing 
structural damage. Several investigations have been performed to study different aspects of 
such a problem. 
 

At the beginning of twentieth century, Jeffcott [1] managed to calculate the vibration 
response of simple structures with a moving mass. The response characteristics of a beam 
subjected to a moving force were investigated by Florence [2], Stele [3], Kenney [4] and 
Smith [5]. In 1969, Stanisic and Hardin [6] determined the dynamic behavior of a simply 
supported beam carrying a moving mass, which is interesting enough, but their method is not 
easily applicable to different boundary conditions.  A comprehensive treatment of the subject 
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of the vibration of structures due to moving loads, which contains a large number of related 
cases, is that of Fryba [7]. 

Stanisic et al. [8] have developed a numerical-analytical method for determining the 
behaviour of beams with various   boundary conditions and carrying a moving mass. Saigal 
[9] has developed expressions for beam structures with the help of Stanisic et al. theory [8], 
which has a higher degree of practical significance. 

 Later, Akin and Mofid [10] analysed such problems for finite beams with moving loads 
using a differential equation. Their theory is based on orthogonal functions, and the results 
indicate that the governing differential equation can be transferred into a series of coupled 
ordinary differential equations. The study has used the Continuous System Modeling 
Programming (CSMP) to solve the system of ordinary differential equation.  

Behera et al. [11] have presented an analytical-computational method to study the 
dynamic behaviour of a cantilever beam with multiple cracks. They have compared between 
the numerical and experimental results. The results obtained from the experimental analysis 
show excellent agreement with the corresponding numerical results.  

Mahmoud and Abou Zaid [12] have developed an iterative modal analysis approach to 
determine the effect of transverse cracks on the dynamic behavior of simply supported 
undamped Bernoulli-Euler beams subject to a moving mass. They have shown, the largest 
deflection in the beam for a given speed takes longer to build up and a discontinuity appears 
in the slope of the beam-deflected shape at the crack location. Behera et al. [13] have 
presented an analytical method to determine the response of a cracked beam with different 
boundary conditions, carrying a moving mass. 

In this paper, the dynamic behavior of a two-crack cantilever beam with a moving mass 
is studied. The effect of acceleration in the direction of deflection, the effect of Coriolis force, 
and the effect of the path curvature are included in the problem formulation. The numerical 
results are compared with the experiment. A very good agreement is obtained between the 
numerical and experimental results. 
 

2. EQUATION OF MOTION 

A cantilever beam as shown in Fig.1, of length L, mass per unit length m and flexural rigidity 
EI, made from a uniform homogeneous and isotropic material is considered. The beam is 
subjected to a load F of mass M, moving with a constant velocity v. The force acting on the 
beam is given by 
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Figure 1. Geometry of cracked beam with a moving mass 
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                                                                                                (1) 
where vt=η ,g is thegravitational acceleration and 
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Starting from the equality sign, the terms on the right hand side of the above equation 
represent: the effect of acceleration in the direction of deflection )t,(y η , the effect of the 
Coriolis force, and the effect of the path curvature. 
Thus, the equation of motion can be written as 
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with , and vLt /0 ≤≤ δ is the Dirac delta function [14] . The external force P(x, t) is taken as 
 

)()(),( vtxtFtxP −δ= .                                                      (3) 
 
Using Eq. (1), Eq. (2) and Eq. (3), one can find 
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A series solution of Eq. (2) can be taken in the form of 
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where  is the known eigen functions of a freely vibrating beam and  is the modal 
amplitude to be found, and n is the number of contributed modes. To find , the equation 
will be 

)(xYn )(tTn
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where EIA nn

24 ωρ=γ , A is the cross-section area, ρ is the material density, are the natural 
frequencies of the beam, and are functions of time which have to be calculated. 

nω
)(tTn

Due to the localized crack effect, the double-cracked beam can be simulated as one with three 
segments. The general solution for the displacement on each part of the beam, based on the 
Euler-Bernoulli beam theory, from Eq. (6) is 
 

)cosh()sinh()cos()sin()( 1111 xdxcxbxaxY nnnnn γ+γ+γ+γ=  for 10 Lx ≤≤ ;                      (7a) 
 

)cosh()sinh()cos()sin()( 2222 xdxcxbxaxY nnnnn γ+γ+γ+γ= for < x ≤ ;1L 2L                     (7b) 
 

)cosh()sinh()cos()sin()( 3333 xdxcxbxaxY nnnnn γ+γ+γ+γ=  for < x ≤2L L ,               (7c) 
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where and (i =1,2,3) are constant coefficients to be determined depending upon the 
boundary conditions[11,15]. 

iii cba ,, id

 
)(tTn  in Eq. (5) is the function of time and can be calculated by rewriting the right hand side 

of Eq. (4) as 
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Substituting Eq. (5) into Eq. (8), Eq. (8) converts to  
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Multiplying both sides of Eq. (9) by , then integrating over the beam length, using the 
dirac delta integral property [14] and by using the orthogonal property of the function the 
equation of motion can be written in a coupled ordinary differential equation form [13] as  
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Eq. (10) may be rearranged as 
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As Eq. (11) must be satisfied, for any arbitrary value of x (i.e., each point of the beam), and 
this is possible only when the expression in the bracket is equal to zero for arbitrary n, 
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Equation (12) is a set of coupled ordinary differential equations and a numerical procedure 
Runge-Kutta method is used to solve it. 

3. NUMERICAL ANALYSIS 

The values are obtained at the required position using equation (12). The Runge-Kutta 
numerical method is used to solve it. Then the displacement of the beam at any instant of time 
can be obtained by using Eq. (5). The first three modes of vibration are calculated and the 
total deflections of the beam are found out. An aluminum cantilever beam 
(0.8x0.038x0.006m) as shown in Fig.1 is considered for the beam response. The relative crack 

)(tTn
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positions (zl1, zl2) are taken as 0.125 and 0.25 for two cracks. The relative crack 
depths( Wa1 , Wa2 ) at the crack locations vary between 0.1667 and 0.334.The numerical 
results for displacement at the end point of the cantilever beam with and without crack are 
plotted in Figs.3 & 4. Fig. 5 shows the 3-D plot for the variation of displacement at the free 
end of cracked beam with variation of time for different velocities of the moving mass. 
 

4. EXPERIMENTAL ANALYSIS 

The experimental set up used for conducting the experiment is shown in Fig.2. A number of 
tests were carried out on an aluminium beam specimens (L = 0.8 m, B = 0.038 m, W = 0.006 
m) with and without transverse cracks. The relative crack locations were taken such that zl1= 
0.125 and zl2 = 0.25. The relative crack depths were chosen such that, Wa1 , Wa2 = 0.1667 , 
and 0.334 for the vibration analysis. Moving masses for the tests were selected as 1.0 and 1.5 
kg. The velocity of the moving body was considered as10.28 km/h.The LVDT was positioned 
at the free end of the beam. The free end deflection of the beam for various positions of the 
moving mass was recorded. The outputs from the LVDT were taken to a computer using a 
data acquisition card. The results for different velocities of the moving mass are plotted in 
Figs.3 & 4. The corresponding numerical results are also shown in the same graph for 
comparison. While conducting the experiments, precautions were taken in positioning the 
LVDT and adjusting the variac accurately to have desired constant velocity of the moving 
masses. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Experimental set up 
 
 
 
 
 
 
 

5 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (sec)

D
is

pl
ac

em
en

t a
t e

nd
 p

oi
nt

 (m
) Theoretical (without crack)

Theoretical (with cracks)

Experimental (without crack)

Experimental (with cracks)

 
 
Figure 3. Displacement at end point (m) vs. time (sec), M=1.0 kg, v=10.28 km/h 
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Figure 4. Displacement at end point (m) vs. time (sec), M=1.5 kg, v=10.28 km/h. 
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Figure 5. 3-D plot for the displacement at end point (m)-velocity  (km/h)- time (sec), M = 1.0 

kg, , zl1= 0.125, zl2 = 0.25 334.0W/a,334.0W/a 21 ==

 

5. DISCUSSIONS 

 
From Figs.3 & 4 it is noticed that, as the mass of the moving body increases, the end point 
deflection of the cracked beam increases relative to that of the corresponding uncracked 
beam. As the speed of the moving mass increases the maximum dynamic deflection of the end 
point increases until it reaches a maximum. Above this speed, the maximum deflection 
decreases with increase in moving mass speed. The moving mass speed that corresponds to 
the maximum end-point deflection is called critical speed of the moving mass. The maximum 
dynamic deflections of the free end are shown in Fig.5.  

6. CONCLUSIONS 

The behaviour of a cracked cantilever beam, when carrying a moving mass with uniform 
speed, has been analyzed. In describing the dynamic effect of the moving mass load, the total 
differential must be considered since the mass is moving on a vibrating path. It has been 
shown that the inertial effect of the mass load causes the set of differential equations of 
motion to be coupled. Hence, ignoring this effect results in solving a set of uncoupled linear 
second order differential equations, which is the solution for the corresponding moving force, 
and not the mass, problem. In order to solve the governing differential equation, the Runge-
Kutta numerical technique was employed. The solution series converged rapidly and usually 
required a small number of modal shapes for relatively accurate results. At the critical speed 
the deflection of the beam reaches to a maximum value. Beyond the critical speed the 
deflection of the beam decreases.  
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