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Abstract

This paper discusses the use of wave based prediction methods for the analysis of steady-state
interior acoustic problems. Conventional element based prediction methods, such as the finite
element method (FEM), are commonly used, but are restricted to low-frequency applications.
The wave based method (WBM) is an alternative deterministic technique which is based on the
indirect Trefftz approach. The WBM is computationally very efficient, allowing the analysis of
problems at higher frequencies. The efficiency of the WBM is most pronounced for problems of
moderate geometrical complexity. For the analysis of problems with a more complex geometry,
a hybrid finite element-wave based method is developed. This hybrid approach combines the
strengths of the two methods, namely, the high computational efficiency of the WBM and the
ability of the FEM to model problems of arbitrary geometrical complexity. Up till now, only
low-order FE models have been coupled with WB models. This paper discusses the application
of more accurate high-order FE schemes in the hybrid FE-WB approach. The performance of
the resulting high-order hybrid method will be illustrated by means of a numerical validation
example.

1. INTRODUCTION

Deterministic element-based methods, like the finite element method (FEM), are generally ac-
cepted for steady-state interior cavity analysis. Due to the approximating nature of the applied
shape functions, element sizes need to decrease with raising frequency in order to maintain a
reasonable prediction accuracy [1]. As a result, numerical model sizes grow with frequency and
become prohibitively large at high frequencies [2]. However, due to the discretization into small
elements, the FEM is able to model problems of arbitrary geometry.

In recent years, a Wave Based Method (WBM) [3] has been developed for steady-state
acoustic cavity analysis. This method is based on an indirect Trefftz approach [4], in that the
dynamic pressure response is expanded in terms of wave functions, which are exact solutions
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of the governing dynamic equation. In this way, the unknown wave function contribution fac-
tors in the pressure response expansion are merely determined by the evaluation of boundary
and continuity conditions. This results in small numerical models, which exhibit an enhanced
computational efficiency as compared to the element-based methods, allowing the method to
tackle problems also in the mid-, and sometimes even high-, frequency range [5]. However, in
order to fully benefit from the enhanced computational efficiency of the WBM, the geometrical
complexity of the considered problem should be moderate.

A hybrid approach combines the strong points of both the FEM and the WBM by using
the WBM for modelling large, homogeneous problem subdomains, while the FEM is applied to
model the geometrically more complex regions [6]. This hybrid FE-WB method exhibits similar
high performance characteristics as the WBM, but overcomes the limitation of the moderate
geometrical complexity. Up till now, only first-order FE models have been coupled with WB
models [7]. This paper discusses the application of more accurate high-order FE schemes in the
hybrid FE-WB approach.

2. PROBLEM DEFINITION

Consider a steady-state interior acoustic problem, as shown in figure1. A closed boundary
surrounds a bounded fluid domainV , which is characterized by its speed of soundc and its
ambient fluid densityρ0. The fluid domain is excited by an acoustic volume velocity point
sourceq at circular frequencyω. The time-harmonic pressure response is given byp(r, t) =

p(r, ω)ejωt with r = [x y z]T the position vector,T the transpose operator,j the imaginary
unit

√
−1 and witht denoting the time. From here onwards, the steady-state solutionp(r, ω) is

abbreviated asp(r).
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Figure 1. An interior acoustic problem Figure 2. Acoustic domain partitioning

Assuming that the system is linear, the fluid is inviscid and the process is adiabatic,p(r)

is governed by the Helmholtz equation

∇2p(r) + k2p(r) = −jρ0ωδ(r, rq)q , (1)

with∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 the Laplacian operator,k = ω/c the acoustic wave number and with
δ a Dirac-delta function.

The boundary of the considered acoustic problem domainV is denoted as∂V = Ω and
consists of three parts:Ω = Ωv ∪ ΩZ ∪ Ωp imposing, respectively, predefined normal velocity
valuesv̄n(r), predefined normal impedance valuesZ̄n(r) and predefined pressure valuesp̄(r):

r ∈ Ωv : Lv(p(r)) = v̄n(r) ,

r ∈ ΩZ : Lv(p(r)) = p(r)/Z̄n(r) , (2)

r ∈ Ωp : p(r) = p̄(r) .
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Lv represents the normal velocity operatorLv = j
ρ0ω

∂
∂n

with ∂
∂n

= nT ∇ the derivative in

the normal direction.n = [nx ny nz]
T is the vector normal to the fluid domainV and∇ =[

∂
∂x

∂
∂y

∂
∂z

]T
is the gradient vector.

Together with the associated boundary conditions (2), the Helmholtz equation (1) defines
a unique pressure fieldp(r).

3. THE WAVE BASED METHOD

The wave based method (WBM) [3] is a deterministic prediction technique for the analysis of
steady-state interior acoustic problems. In general, two major steps are distinguished in the WB
modelling procedure.

3.1. Wave function selection

Due to the non-convexity of a general bounded acoustic problem domainV , see figure2, an ini-
tial partitioning intoNV non-overlapping, convex subdomains is requiredV =

⋃NV

α=1 V (α). Sub-
sequently, continuity conditions must be applied at the resulting interfacesΩ

(α,β)
I = Ω

(β,α)
I =

∂V (α) ∩ ∂V (β) in order to ensure continuity of the solution at the interfaces [7].
In contrast with the FEM, the WBM describes the field variables as an expansion of

wave functions which exactly satisfy the governing differential equations. In this way, only an
approximation error is introduced at the boundaries and the interfaces. The steady-state acoustic
pressure fieldp(α)(r) in acoustic subdomainV (α) is approximated as solution expansionp̂(α)(r)

p(α)(r) ' p̂(α)(r) =

n
(α)
w∑

w=1

pw
(α) Φ(α)

w (r) + p̂(α)
q (r) = Φ(α)(r) pw

(α) + p̂(α)
q (r) . (3)

The wave function contributionsp(α)
w are the weighting factors for each of the selected wave

functionsΦ
(α)
w (r). Together they form the (n(α)

w × 1) vector of degrees of freedompw
(α). The

corresponding known wave functions are collected in the (1 × n
(α)
w ) row vectorΦ(α). Each

acoustic wave function exactly satisfies the homogeneous Helmholtz equation

Φ(α)
w (r (x, y, z)) =


Φ

(α)
wr (x,y,z) = cos(k(α)

xwrx) cos(k(α)
ywry) e−jk

(α)
zwr z

Φ
(α)
ws (x,y,z) = cos(k(α)

xwsx) e−jk
(α)
ywsy cos(k(α)

zwsz)

Φ
(α)
wt (x,y,z) = e−jk

(α)
xwtx cos(k(α)

ywty) cos(k(α)
zwtz)

. (4)

with wave number components defined as

(
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with w
(α)
1 , w

(α)
2 , w

(α)
3 , w

(α)
4 , w

(α)
5 andw

(α)
6 = 0, 1, 2, . . .. The dimensionsL(α)

x , L
(α)
y andL

(α)
z

represent the dimensions of the (smallest) bounding box, circumscribing the considered subdo-
main.

In (3), p̂
(α)
q represents a particular solution resulting from the acoustic source termq(α)

in the inhomogeneous Helmholtz equation (1). The free-field solution of a point source is used
[3].

3.2. Wave based model construction and solution

With the use of the proposed pressure expansion (3), the Helmholtz equation (1) is always
exactly satisfied, irrespective of the values of thenW =

∑NV

α=1 n
(α)
w unknown wave function

contribution factorspw. Due to the partitioning of the acoustic problem domainV into a number
of NV acoustic subdomainsV (α), with α = 1 . . . NV , continuity conditions along the subdomain
interfacesΩ(α,β)

I must be taken into account, in addition to the problem boundary conditions (2).
The unknown wave function contribution factorspw are merely determined by these boundary
and continuity conditions.

Since both the boundary conditions and the continuity conditions are defined at an in-
finite number of boundary positions, while only finite sized prediction models are amenable
to numerical implementation, the boundary and the continuity conditions are, for each subdo-
main, transformed into a weighted residual formulation. Combination of all formulations yields
a square WB matrix equation, which is denoted in a condensed form as

A pw = b . (6)

Solution of (6) and backsubstitution of thenW wave function contribution factorspw in the
pressure expansions (3) yields an analytical description of the dynamic pressure fieldp̂ in all
subdomainsV (α).

4. THE HYBRID FINITE ELEMENT - WAVE BASED METHOD

The hybrid finite element - wave based (FE-WB) method [6, 7] brings together the enhanced
convergence properties of the WBM and the ability of the FEM to model any geometry, without
restrictions on geometrical complexity. Applied to a general acoustic problem, large homoge-
neous acoustic domains are modelled with the WBM, while the geometrically more complex
regions are tackled with the FEM. The saved computational resources, due to the enhanced con-
vergence characteristics of the FE-WB method, as compared to the conventional FEM, can be
used in a model refinement of the involved FE part. As a result, the refined hybrid models can
be applied for predictions at higher frequencies, without loss of geometrical flexibility. Figure
3 illustrates the proposed modelling strategy for the case of an interior car cavity.

Consider an acoustic FE model consisting ofnfe nodal degrees of freedom (dofs) and
an acoustic WB model consisting ofnW wave function contribution dofs, see figure4. At the
resulting interfaces between the FE and the WB model, continuity conditions are imposed along
the common interfaceΩH

vfe(r) = −vw(r)

pw(r) = pfe(r)
. (7)
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1. original FE mesh

2. computationally more efficient
hybrid FE-WB model

3. model refinement with saved
computational resources

�H

vw

pf e

pw

vf e

WB domain FE domain

Figure 3. Hybrid FE-WB modelling strategy
Figure 4. The fundamental no-
tations for a hybrid FE-WB
coupling

These continuity conditions result in additional terms in the weighted residual formulations of
the FE and the WB model and link the two models together, yielding a matrix equation of the
following form [

Sfe Qfw

Qwf Sw

]{
pfe

pw

}
=

{
sfe

sw

}
, (8)

collectingntot = nfe + nW algebraic equations in thenfe nodal FE dofs and thenW wave
function contribution dofs.

Up till now, only first-order FE parts have been considered in assembling hybrid models.
However, the hybrid formulations (7) are not restricted to low-order models, but may also be
applied for FE parts of higher order. The following section will discuss the application of high-
order FE parts and discuss their performance.

5. NUMERICAL VALIDATION EXAMPLE

5.1. Problem definition

Consider the non-convex three-dimensional cavity (V = 2.033m3, outer dimensionsLx '
3.5m, Lx ' 2m andLz ' 1m), shown in figure5. The cavity is an assembly of three trapezoidal
volumes [7]. The system is excited by an acoustic point source located at point 17. The source
is characterised by its volume velocityQ = 4π

jρ0ck
. The cavity is filled with airc = 340 m/s,

ρ0 = 1.225 kg/m3 and all walls are acoustically rigid̄vn = 0 m/s. Inside the cavity, 1323
response points are defined, which are distributed equally throughout the whole cavity.

Figure 5. Non-convex simply shaped 3D cavity
Figure 6. Hybrid FE-WB model definition (two
WB subdomains and one FE subdomain)
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All the calculations are performed on a Centrino Intel PentiumM computer system
(2.13GHz, 2Gb RAM) running a Windows XP-Professional operating system. The FE mod-
els are solved withMSC/Nastran2005 . The WB and the hybrid models are solved with aC++
implementation of the involved routines.

5.2. Model descriptions

• FEM: Several linear 8-noded and quadratic 20-noded hexahedral FE meshes of the full
acoustic cavity have been constructed. Model sizes vary from 1223 dofs up to 501809
dofs.

• WBM: Due to its non-convex shape, an initial partitioning intoNV = 3 convex subdo-
mains precedes the selection of the wave functions. Several WB models, applying from
72 up to 8406 wave functions, are constructed.

• FE-WB method: In order to apply the hybrid FE-WB method, two acoustic subdomains
are modelled with the WBM, while the third subdomain is modelled with the FEM, see
figure 6. 83% of the total cavity volume is occupied by the two WB subdomains. The
remaining17% is modelled with linear 8-noded and quadratic 20-noded hexahedral finite
elements.

5.3. Numerical results

Figure7 shows the pressure contour plot of a plane through the simply shaped 3D cavity at
400Hz, predicted with the hybrid FE-WB method. The applied model consists of 1956 wave
functions and 10881 FE dofs resulting from 2304 20-noded quadratic hexahedral elements. The
figure clearly illustrates that the continuity conditions between the different subdomains are
accurately represented, since the pressure field is continuous over the subdomain interfaces.
Also the rigid boundary conditions are taken correctly into account, since the pressure contour
lines are perpendicular to the rigid walls.

Figure 7. Pressure contour plot (real part) predicted with the hybrid FE-WB method at400Hz [Pa]

In order to characterize the computational efficiency of the hybrid FE-WBM as compared
to the FEM and the WBM, a convergence analysis is performed. Figures8, 9 and10 show the
relative prediction accuracyε with respect to the frequency dependent CPU time, at200Hz,
400Hz and700Hz, respectively.ε is defined as the average of the relative prediction accuracies
in the nε = 1323 response points inside the cavity. The most detailed quadratic FE model is
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used as reference model.

ε =
nε∑

j=1

εj

nε

with εj =

∣∣∣∣pprediction[Pa] − preference[Pa]

preference[Pa]

∣∣∣∣ (9)

The hybrid FE-WBM results are represented by the solid lines with theo markers when
the FE part applies linear 8-noded hexahedral elements and4markers when the FE part applies
quadratic 20-noded elements. The hybrid predictions are obtained using hybrid models with a
fixed number of FE dofs (2873 for the linear models and 1589 for the quadratic models) and
an increasing number of wave functions. The solid lines with the♦ markers represent pure
WBM predictions with increasing number of wave functions. The solid lines with∇ markers
represent pure FEM predictions using quadratic elements, while the dashed lines witho markers
are pure FEM predictions applying linear elements. Both curves are obtained by increasing the
associated mesh density.
These figures illustrate that

• the prediction accuracy of the FEM (both linear and quadratic) deteriorates with increas-
ing frequency.

• the prediction accuracy of the WBM is more or less frequency independent.

• at low frequencies, the quadratic FEM is most efficient, while, with increasing frequency,
the WBM becomes more efficient.

• at 200Hz, both the linear and quadratic hybrid FE-WB models yield accurate results.
Both convergence curves fall back onto the WBM convergence curve, illustrating that at
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Figure 8. Pressure convergence curves at
200Hz

Figure 9. Pressure convergence curves at
400Hz
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Figure 11. Pressure convergence curves at
700Hz, refined hybrid models
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this low frequency, the accuracy of the WB part in the hybrid models governs the overall
prediction accuracy.

• at 400Hz and 700Hz, the hybrid convergence curves stagnate due to the limited accuracy
of the involved FE parts. This is illustrated by figure11, which shows hybrid predictions
resulting from more dense FE discretizations in the hybrid models, i.e. 9025 linear dofs
and 10881 quadratic dofs. Comparison between figures10 and11 shows that the stagna-
tion level decreases towards higher prediction accuracy.

• at 700Hz, the accuracy of the models involving linear FE fail to converge due to a too
coarse element discretization.

6. CONCLUSIONS

This paper discusses the application of the hybrid FE-WB models, applying high-order FE
submodels, for the analysis of steady-state interior acoustic problems. The hybrid approach
combines the high computational efficiency of the WBM and the ability of the FEM to model
problems of arbitrary geometrical complexity. Applied to an interior acoustic problem, large
homogeneous acoustic domains are modelled with the WBM, while the geometrically more
complex regions are tackled with the FEM.

A direct coupling approach between high-order FE submodels and WB submodels is
discussed. A numerical validation example shows that, especially for higher frequencies, the
hybrid FE-WB method becomes an efficient alternative for the conventional FEM.

Future research will study the applicability of the high-order FE-WB method for more
complex problems and will investigate the use of indirect coupling approaches.
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