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Abstract

In the present paper, we introduce and analyse a mechapgtahsin which the digital imple-
mentation of a linear control loop may lead to chaotic betwawiThe amplitude of the evolving
oscillations is usually very small, this is why these ardethimicro-chaotic vibrations. As a
consequence of the digital effects, i.e., the sampling edaund-off error, the behaviour of
the system can be described by a three dimensional pieckmese map, the micro-chaos map.
We examine a 2D version of the micro-chaos map and provehibahap is chaotic.

1. INTRODUCTION

Even the application of a linear control law may lead to cltabehaviour if there is some
nonlinearity in the implementation of the control systemigitdl control is an eminent example
for this case —, or state-dependent delayed control isegbfl].

In the present paper, we analyse a simple model of a digitaltrolled mechanical
system, which may perform chaotic vibrations. As a consegeef the digital effects, i.e., the
sampling and the round-off error, the behaviour of thisexystan be described by a piecewise
linear map, the micro-chaos majj.[It was proved in the mid-nineties by Haller and Stépgjn [
that the 1D version of the micro-chaos map is chaotic. A eceoplyears later we found that if
dry friction is present in the system, the resulting behawie transient chaotic. We developed
methods for the determination of the mean lifetime of clatinsients in the case of the 1D
piecewise linear micro-chaos maf p]. The goal of our present contribution is to perform the
first step of the same program for a 2D version of the mapweprove that the map is chaotic.
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2. FUNDAMENTAL PROPERTIESOF THE 2D MICRO-CHAOSMAP

2.1. Derivation of the 2D micro-chaos map

The mechanical model of a digitally controlled polishingltes shown in Figurel. The char-
acteristic of the friction force between the revolving gbing tool and the fixed workpiece is
a mixture of the dry and viscous friction characteristicen§equently, to stabilize the tool in a
certain position, control force must be applied. The shiahe polishing tool is driven by a DC
motor, which exerts a control fora@, governed by a digital control system. The linearized,
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DC motor

Figure 1. The mechanical model of the polishing tool
first order equation of motion of the system assumes theviiglig form:

md +mgp' (vo)v = mgpu(vo) —mgp(ve) — Dv. 1)

~
Q: control force

The computer samples the velocityat discrete time instances; = v(t;) = v(j7), j €
{1,2,...}; t; = jr is the M sampling instants is the sampling time. Since some time is
needed to process the measured signal, the force is exgrted motor a bit after the sampling
instant. We assume that this processing delay is equal teatmpling time. In this case the
control force exerted dt depends on the data sampled at.

Since the output signal has a finite resolutiénthe behaviour of this system can be
described by the following 2D map:

[Zjﬂ B lg (1)] [:Z] - [bhlnt%%fa’)]’ ()

whereu; corresponds to the control force exerted;at

D
a= eng, b=
fmg

(efmg —1), and f=—u'(vy) >0. 3)
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Introducing the new variablg; = Dv,/h, Equation R) can be rewritten as

Yjr1 = ay; — b |nt(yj_1). (4)

Taking into account the effect of sampling but disregardiveground-off error, the corre-
sponding map assumes the following form:

Yj+1 = ay; — byj—l- (5)

In this case the origin is the single fixed point, which — adaay to the Jury criterion, i.e., the
transformed Routh-Hurwitz criterion — is stable if

(a,b) e G={(a,8) eR*|a>1,b<1l,a—b<1}. (6)

Note, that these criterions imply that< 2. During the analysis o#), we will restrict ourselves
to the parameter domad#, and examine cases when the solution is positjye, (> 0, y; > 0).
Our results can be naturally extended to the case of negatiugons, too.

2.2. Fixed points

In case of the map4j, there may exist several fixed points. Divide the plapge ,,y;) into
parallel bands:

M, ={(yj=1,y;) |m <yj-1 <m+1} if m>0, and (7)
Mo = {(yj-1,9;5) | —1<y;-1 <1}. (8)
There can be at most one fixed point in each bafid= (3™, y"), where

mb
a—1

m <y = <m+1 if m>0. 9)

2.3. Basic branches

As it can be shown easily, the fixed points are hyperbolic whih eigenvalues; = 0 and
A2 = a > 1. The unstable manifold (unstable line) of the fixed p@fit can be given as
Un : y; = ayj—1 — bm. Since); = 0, the solution immediately arrives at the family of the
unstable line¢/,,, m = 0,1,2, ..., and stays on these lines.

The intersection point of/,,, and the liney;,_y = misp} = (m,y)?) = (m, (a — b)m),
while the intersection point of/,, and the liney,_, = m + 1isp , = (m+ 1,y7,,) =
(m+ 1,a(m + 1) — bm). The upper index refers to the number of the unstable linéewhe
lower index shows the first coordinate of the point. Sincefsan themth band are mapped onto
the unstable manifold g&™, the image op™: pi = (zI%, y™) = ((a — b)m, (a® — ab — b)m)
is the Ieftmost point that can be reached frém. Sincep;,,, € M, its imagepg;, =

T8 Yoy = ((@ = b)m + a, (a* — ab — b)m + a®) is the rightmost accumulation point of the
pomts that can be reached frdify,. According to these results, the basic branch of the fixed
pointp™, i.e., the longest piece of the manifold emanating from tkedfipoint, is defined as

yi=ayj_1 —bm, (a—bm<y;_1 < (a—bm+a. (20)



ICSV14 « 9-12 July 2007 « Cairns « Australia

As computer experiments showed, there are finite domairteiparameter plang, b), where
the solution stays on the fundamental branches of certagd fpoints. These fundamental
branches form the attractor of the system — see Figure
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Figure 2. Attractor of the 2D micro-chaos map= 1.5,b = 0.6
Note that if we neglect the processing delay, we arrive atdte@wing 1D map:

Yj+1 = ay; — bInt(y;). (11)

This map is chaotic as it was proved Bj.[The graph of {1) is shown in Figure3. As it can be
seen, the graph ofLQ) is similar to the attractor of4].

6 T T T
—— Graph of the 1D map
————— Yj+1 = Yj
5  Cob-web diagram of a solutiq

Figure 3. 1D micro-chaos map,= 3.5, b = 3.0

Based on this similarity, the successive iteration stegh@®@2D map4) can be followed
easily on a modified cob-web diagram. Starting at a certaiiaipoint, the next point is found
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as follows: one projects the point "horizontally” to the glaanal, then "vertically” to the line of
the attractor. In the "multi-valued” domains the approgiaranch is selected according to the
previous value of the coordinatg._; .

The solution can jump from theith basic branch to the next one, over the corresponding
fixed point, ifyg, > y™*1. This situation may occur if

a*(a—1)(m + 1).

12
ma? + 1 (12)

b <

Similarly, the condition of;™ < ™! is

a*(a —1)m

b > (13)

ma? — 1

If these conditions are not fulfilled, the basic branchegof! or p~! become mangled, since
the solution cannot go to the other side of the corresponfiag point.

Thus, the maximal and minimal numbers with which whole basic branches occur are

b 2(a—1)—b

a’(b+1—a) a’(b+1—a) L (14)

The rightmost point of the attractor can be obtained as tlagefyg >
(z,,yr) = (a(a —b) — b)Mmmax + a*, az, — b(Mmmax+ 1)). (15)

The leftmost point of the attractor can be obtained as thg@wdyy "™

inf
(z1,y1) = (a(a — b) — b)mmin, ax; — b(mmin — 1)). (16)

The introduced points are shown in Fig@gogether with the auxiliary lines; : y; =
dodbby. andFy oy = “o%by. 4 9b passing through the endpoints of the basic
branches.

3. PROOF OF CHAOS

In this section we will prove that mag) has chaotic solutions in certain parameter domains.

3.1. Sensitive dependence on initial conditions

We know that solutions arrive at the family of unstable lipes- ay;_; —mb, m =0,1,2,.. .,
and stay on these lines. The distance of two neighbourieg lisb/+/1 + a2.
Let us fix a constant = b/(1 + a?) < b/+/1 + a*. We will show that for any two points
Po # Qo With |po — Qo| < d, there existsV > 1 such that the distance of théth iterates of
these points is less than
Py —dn| > 6. 17)

According to the conditions stated aboye, and g, must lie on the same line and if they
arrive at different lines, we are done. Since the map expgmdbnexpands the distances of
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points taken from the same band and the same line, withositdbgenerality we can assume
that aftern iterations the two points arrive at different bands|pf — q,,| > J, we are done.

If not, then we havdp,, — q,| < & = b/(1 + a®) < 1, thus, we can assume that =
(u,au —mb) € M; andq,, = (v,av — mb) € M,,,. The next iterates of these points are
Pni1 = (au—mb, a(au—mb)—ib) andd, 1 = (av—mb, a(av—mb)—(i+1)b). Consequently,

ot — Gst] = [(a(u—v), a*(w—v) =b)| > |(0,a*(u—v)~b)| > b—a*[v—u| > b—a?s = .
(18)
Hence the choic&” = n + 1 completes the proof.

3.2. Existence of an attractor

Under certain conditions — e.gyt, < yjnt; andy; < yi —, it follows from the definition

of the points introduced in Sectigh3that there are broad parameter domains where the basic
branches betweefx;, y;) and(z,, y.) form an invariant and attractive sgt. More precisely,

the attractor consists of segments of the lings- ay,_, — bi, where

yj—1 € (z,xgmn '), i = mpin— 1 (19)
Yj—1 € (:Cinf]Lfmin’ .Tganﬁin), 1= M min (20)
Yi-1 € (Tip(™ Teup™), 1= Mimax (21)

Yj—1 € (xinmax—i_la xr)a T = Mmax+ 1. (22)

As an example, see FiguBewheremmin = 2 andmmax = 3. The set

Yji-1 € (Mmin — 1, mmin), y; € (g™t ymmn=t) (23)
Yj—1 € (Mmin, Mmin + 1), yj € (ym::::a y:mii:Jrl) (24)
Yj—1 € (mmaXa Mmax + 1)7 Y; € (yznn::; yfnl:::;rl) (25)

Yj-1 € (mmax+ L, mmax + 2)7 yj € (yyrrrz:ﬁ%’gmmml) (26)

is part of the basin of attraction of.

There are cases when the attractor consists of only two redrgisic branches. In such
cases Equationd.§) lead tommin = mmax + 1, Although these numbers cannot be interpreted
as the indices of the leftmost and rightmost whole basicdiras, the above expressions still
hold.

3.3. Topological transitivity

It this section we show that in certain parameter domainsttiactor.A can be partitioned in
such a way that any region can be reached from any other ragiariinite number of steps.
Introduce the transition matrid of the partition as

0 = 1 if F(Ii).DIj | 27)
0 otherwise
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We will show via an example that the transition matrix, désong the dynamics over the par-
tition, is primitive, i.e., there exists an integer numhber 0, such that every element df* is
positive. Consequently, the matrix is irreducible, as well

The attractor of map4) can be seen in Figureat parameterg = 1.25 andb = 0.6. The
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Figure 4. Partition of the attractar,= 1.25, b = 0.6

partition of the attractor is constructed as follows: thetissis between thg,_, = 1 line and the
Fy or F, lines are the basic regions. These are denote}ldnds in Figure4. The pre-images
of these segments form the remaining regions. As it can beiedggure4, the third pre-image
of region3 would stretch out from the basic branch, this is why regiaronsists of the pre-
image of regior? and the remaining part of the basic branch. Important thetthy the image
of 8 fully covers regionl. On the other basic branch, regi¢ronsists of certain pre-images of
region5 and the remaining part of the basic branch. As it can be obdetlie image of region
3 fully covers regiong and5. According to this partitioning, every region can be reatfiem
any other region. The transition matrix of this partitiomdze written as follows:

(28)

_ o O O O o O O
O O O O o o o =
o O O O o o —= O
o O O O o = O O
o O O O = = O O
o O O = O O O O
o O = O O O o O
o =R O O O O o O

There are finite parameter domains where the structure @itgion and then x m transition
matrix is similar to the one shown in the example, i.e., therene non-zero element in every
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row and column, not in the main diagonal, and there is an @it non-zero elemeni;:

aii+1:1, 1=1..m-—1 (29)
am1 = 1 (30)
ag; =1, wherek # j, k+1# j. (32)

It can be shown, thatinthis casg ,; > 0if k > 1,0r A2, > 0if k = 1, andA},,, > 0if j <

m, or A7, > 0if j = m. Thus, the existence of the additional non-zero elemgnimplies the
appearance of two additional non-zero elements. MoreelMgr, > 0if i < m —1,0r A7 >0

if i =m — 1, or A% > 0if i = m. Thus, the diagonal non-zero elements are simply shifted
to the right. It can be proved by induction, that the numbenarf-zero elements increases at
least by one during the multiplication #y. Thus,A" contains only nonzero elements, where
N < m? — m. In the exampleN = 50 < 82 — 8 = 56. The proved property of the transition
matrix A implies that the micro-chaos map is topologically transion A.

4. CONCLUSIONS

A two dimensional version of the micro-chaos map was intoeduas a simple model of dig-

itally controlled systems. Exploiting the similarity bexen the well-studied 1D micro-chaos
map and the attractor of the 2D map, we proved three propesfi¢his latter map: sensitive

dependence on initial conditions, existence of an invaa#inactor and topological transitivity.

These properties imply that the maj) (s chaotic in finite parameter domair@.
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