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Abstract 
 
A frequency-domain approach for computational aeroacoustics is developed for the prediction 
of azimuthal sound modes propagating in axisymmetric flow ducts. Different pseudo-time 
marching methods are implemented and compared including an upwind scheme, a four-stage 
Runge-Kutta scheme and a dual-time scheme. Numerical validation for hard walled ducts 
including simple and complex geometries are presented to evaluate the accuracy and efficiency 
of the proposed methods. It is shown that all the implemented time marching methods can 
achieve converged numerical solutions. Comparatively, the four-stage Runge-Kutta scheme is 
most efficient, while the upwind scheme is the most time consuming. The local time stepping 
technique can accelerate numerical computation to some extent. The dual-time scheme has the 
advantage of improving the numerical accuracy and expanding the numerical stability range.  

1. INTRODUCTION 

The prediction of acoustic propagating through complex nacelle geometry with lining treatment 
and non-uniform mean flow is a key technology in the reduction of sound radiation from ducted 
fans. Various theoretical and computational methods have been developed for duct acoustics, 
such as the finite element, boundary element, multiple scale and computational aeroacoustics 
(CAA) methods. Comparatively, CAA methods have received much attention due to its 
capability for flow ducts with complex geometries. However, acoustic optimisation always 
requires very efficient numerical prediction tools in each run. Therefore, it is very important 
and desirable to develop very fast and accurate CAA methods for duct acoustics.  
During the past ten years, both the time-domain and frequency-domain CAA methods have 
been developed for the simulation of sound propagating through lined flow ducts. For example, 
Li el al. [1] developed a time-domain CAA approach suitable for azimuthal sound mode 
propagating in axisymmetric flow ducts. Lan and Guo [2] developed a frequency-domain CAA 
method for axisymmetric lined flow ducts. Comparatively, time-domain CAA methods are 
more suitable for broadband, transient and nonlinear acoustic problems. Its main difficulty is on 
the construction of time-domain impedance boundary conditions. Frequency-domain methods 
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are more favourable for single frequency problems due to their efficiency. The pseudo-time 
marching methods that have been implemented and tested in previous frequency-domain CAA 
methods [2][3] are very limited, however. This paper aims to develop efficient and accurate 
frequency-domain CAA approaches for axisymmetric flow ducts through comparing different 
pseudo-time stepping methods.   
The paper is organized as follows. Section 2 presents the governing equations and numerical 
algorithms. In section 3, numerical validation and testing results are provided and analysed for 
circular ducts and aero-engine intake geometries. A conclusion is given in section 4.   

2. GOVERNING EQUATIONS AND NUMERICAL ALGORITHEM 

2.1 Governing equation 

The governing equations are the 2.5-D Euler equation linearized about a mean flow in the 
frequency-domain.  
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where x and r are the axial and radical coordinates, respectively. The mean variables 
0 0 0 0, , ,p u vρ  represent the mean flow density, pressure and velocity components, respectively. 

The variables ρ , p ，u， ，  represent the complex perturbations of density, pressure, 
and velocity components, respectively. m denotes the circumferential mode number; i is the 
imaginary number; 

v w

ω is the angular frequency,γ is the ratio of the specific heats.  
Eq. (1) can be written into the following form: 
 
                                   ( )i Q F Qω =                              (2) 
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2.2 Numerical algorithms 

Through the introduction of pseudo-time marching technique, Eq. (2) can be formulated as: 
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                         (3) 

 

where t is introduced as the pseudo time. 

Different time-marching methods can be used to discretize Eq. (3). The first order implicit 

upwind time marching method is the most straightforward one which can be expressed as: 
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where the superscript n denotes the pseudo-time level n tΔ . 
This method was used in the frequency-domain method of Lan and Guo [2].  
The second pseudo-time disretization method for Eq. (3) is the four-stage Runge-Kutta time 
integration scheme [5] written in the folllowing form: 
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where ( )F F Q i Q Dω= − + , iα  is the coefficient of the Runge-Kutta scheme , and 

 is the damping term. 
)4,3,2,1( =i

D
Özyörük and Alpman [3] implemented this scheme in their frequency-domain method. To 
accelerate solution convergence, a local time stepping technique [4] is implemented and tested. 
Furthermore, a dual time stepping technique [6] is implemented through coupling the 
four-stage Runge-Kutta (RK) scheme and the first order implicit upwind scheme. Introducing a 
fictitious time τ , Eq. (3) can be reformulated as  
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where a new residual, ˆ ( )F Q , is introduced containing the derivative of time t. By introducing 
the derivative of time τ , the system of Eq. (6) is advanced in time using an explicit four-stage 
RK scheme to realize the subiterative process, which can be written as: 
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where the initial value  is derived from the outer iterative loop,  denotes the damping term, 

.  

( )nQ D
* ˆF F D= +

The Dispersion-Relation-Preserving scheme (DRP)[7] is implemented for spatial discretization 
Appropriate boundary conditions are implemented for inflow, outflow and wall boundaries. 
Detailed information about the numerical approach can be found in our previous time-domain 
CAA method [1].  

3. NUMERICAL RESULTS AND ANALYSIS 

Two straight circular ducts subjected to a subsonic uniform mean flow/without flow are firstly 
selected for validation and evaluation of developed frequency domain method. Then the sound 
propagation through an aero-engine intake is numerically simulated for checking the accuracy 
and feasibility for complex geometries.  

3.2 Sound propagation in straight circular ducts 

In the first circular duct case, a uniform grid with 0.01x rΔ = Δ =  is distributed in the interior 
domain along both the x and r directions. The total number of grid points used in the 
computation is 127×54 including a stretched buffer zone. The grid resolution is 12.5 PPW 
along the x direction in the interior domain. The sound source is excited against the uniform 
mean flow of  for , 0 0.5M = − 10=m 1=n , 12=ω . Fig.1 shows the outer wall pressure 
distribution compared between the numerical solution of upwind scheme and the analytical 
solution. Fig.2 shows the outer wall pressure distribution compared between the numerical 
solution of RK scheme and the analytical solution. Both of the numerical solutions agree well 
with the analytical solutions. It can be noticed that the numerical solution by RK scheme agrees 
better than the results by the upwind scheme.  
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Figure 1. Upwind: analytical(○), numerical(—)         Figure 2. RK: analytical(○) ,numerical(—)    
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In the second circular duct case, a uniform grid with 0.02x rΔ = Δ =  is distributed in the 
interior domain along both the x and r directions. The total number of grid points used in the 
computation is 209×54 including a stretched buffer zone. The grid resolution is 14 PPW along 
the x direction in the interior domain. Numerical computations are performed on an Intel(R) 
Pentium(R) 4/1.60GHz processor for the case of 0 0M = , 1,10 == nm , 24ω = . Fig. 3 shows 
the outer wall pressure distribution compared between the numerical solution of upwind 
scheme and the dual-time step scheme. Fig. 4 shows the outer wall pressure distribution 
compared between the numerical solution of Runge-Kutta scheme and the local-time step 
scheme. All the numerical results by different time stepping methods agree very well. 
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Figure 3. Upwind(○),dual time stepping(—)                  Figure 4. RK(○),local time stepping(—) 
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Figure 5. Convergence history: upwind scheme              Figure 6. Convergence history: RK scheme 
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   Figure 7. Convergence history: dual time stepping 

 
Fig.5-7 show the convergence histories by upwind, RK, and dual time stepping method, 
respectively. The magnitude of density perturbation is around 10-4kg/m3. The residual of the 
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density reach a good converged solution in the range of 10-7~10-9 for each scheme. Table 1 
presents the comparison of the total CPU time, iteration steps and residual accuracy by three 
different schemes. It is clear that the RK scheme is the most efficient method whereas the 
dual-time stepping is the most accurate method. 

 

Table 1. Comparison between different time stepping schemes 

Schemes  Total CPU time (s) Iteration 
steps 

Accuracy 
(kg/m3)  

Upwind 42500 50000 10-7

RK 720 2000 10-7

Dual time stepping 3200 5000 10-9  

 

3.2 Sound propagation through an aero-engine intake 

In this case, an aero-engine intake from Rienstra and Eversman [8] is selected for validation. A 
651×151 body fitted gird is generated for numerical computations. The ducted fan case is run 
on a cluster of Intel(R) Pentium(R) 4/3.00G processors. A total of two processors were used for 
this case. The Runge-Kutta scheme and the dual-time stepping scheme are utilized to compute 
the sound propagating through the duct intake for the case of 0 0.5, 10, 1, 16M m n ω= − = = = . 
Fig.8 and Fig.9 show the convergence histories by the RK scheme and the RK scheme with the 
local time stepping technology, respectively. The RK scheme with local time stepping 
technology requires 2000-2500 steps to obtain converged numerical solutions while 3000-5000 
steps will be required by the explicit RK scheme without local time stepping technology. The 
time step size is given by  the CFL number of 1.2 by the RK scheme and 0.9 by the RK scheme 
with the local time stepping technology implemented, respectively. The residual of the density 
by the RK scheme can reach a good converged solution with an accuracy of 10-7 while the RK 
scheme with the local time stepping technique can reach a convergence solution in the accuracy 
of 10-6. Fig.10. shows the convergence history: by the dual time stepping which requires 
40000-50000 steps to reach a convergence solution with an accuracy of 10-9. 
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Figure 8. Convergence history: RK          Figure 9. Convergence history: local time stepping 
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          Figure 10. Convergence history: dual time stepping 
 
The normalized pressure contours are shown in Fig.11 and Fig. 12 .The contours in  Fig.11 was 
calculated by the Runge-Kutta method and in Fig. 12, by the local time stepping method. It can 
be observed that the numerical result by the RK method is slightly smoother than the result 
from the scheme with the local time stepping in the region near the axis. Fig.13 shows the 
normalized pressure contours by the dual time stepping scheme, which gives the smoothest 
solution of these three methods. For further comparison, Fig.14 gives the time-domain CAA 
results from Li, et al. [1]. There is a good agreement between the frequency domain results and 
the time domain results. 
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Figure 11. Normalized pressure contours                        Figure 12. Normalized pressure contours 
(RK in frequency domain)                    (RK with local time stepping in frequency domain) 
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  Figure13. Normalized pressure contours                   Figure 14. Normalized pressure contours            
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4. CONCLUSIONS 

A frequency-domain CAA approach is developed for the prediction of sound propagation 
through axisymmetric flow ducts. Several pseudo-time discretization methods are implemented, 
validated and evaluated. Numerical results show that the explicit Runge-Kutta scheme with the 
local time stepping technique can lead to the fastest convergence of the numerical solution. 
Although the dual-time stepping method can’t achieve the same convergence rate as the 
Runge-Kutta scheme, it can improve numerical accuracy and expand numerical stability range. 
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