
 
 

��������
���������	
��������

�����
���������
 
 
 

 

 

DYNAMICS OF PIEZOCERAMICS-BASED 
MASS AND FORCE ACTUATORS  

FOR ROTATING MACHINES 

Peter Sloetjes, Andre de Boer and Peter van der Hoogt 

University of Twente, Faculty of Engineering Technology, Applied Mechanics Section 
Drienerlolaan 5, 7500AE, Enschede, The Netherlands 

p.j.sloetjes@ctw.utwente.nl 
 
 
Abstract 
 
In the past decade, it has become more and more common to install active vibration control 
devices on rotating systems like grinding machines, tooling centers, industrial fans and drive 
shafts. In the present research, two innovative actuation concepts for such devices are 
evaluated. The first device is a force actuator based on piezoceramic fibers, which has a low 
power consumption and high dynamic range. The second device is a mass redistribution 
actuator based on two piezoelectric ultrasonic motors, which is smaller and faster than 
conventional electromagnetic devices. At the basis of the analysis are rotor dynamic finite 
element models including actuators, sensors and feedback controllers. In simulations and 
experiments with device one, feedback control and scheduled feedforward control are 
considered. It is shown experimentally that the unbalance response at a critical speed can be 
reduced by some 97%. In experiments with device two, the positioning speed is determined. 

1. INTRODUCTION 

The performance of high speed rotating machinery (e.g. grinding machines, tooling centers, 
textile machines, industrial fans and drive shafts) can often be improved by active vibration 
control (AVC). Typically, mass redistribution actuators are used to correct time-varying 
unbalance, while force actuators are used to counteract external disturbances or destabilizing 
phenomena of high speed rotor systems ([1]). Since AVC devices, like most machine 
components, must often satisfy strict requirements on size, cost and power consumption, there 
is an incessant urge to develop smaller, simpler and/or more efficient devices. This paper 
focuses on two rotor-fixed AVC devices that employ piezoceramic actuators: 
 

• MFC force actuator. Macro fiber composites (MFC’s) from Smart Material Corporation 
are piezoceramic fiber actuators with interdigitated electrodes, which are known for 
their conformability, performance and low power consumption during static control. A 
rotor force actuator is created by fixing four MFC actuators (140x3x0.2mm) to four 
sides of a flexible rotor (Figure 1a). Supplying opposite voltages to the electrodes of 
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two facing actuators induces surface stresses which are equivalent to bending moments. 
 

• PUM mass actuator. Piezoelectric ultrasonic motors (PUM’s) from Shinsei Corporation 
Inc. are piezoelectric resonance motors with friction transmission, which are known for 
their compactness, self-locking design and high acceleration and torque. A rotor mass 
redistribution actuator is created by pressing two revolvable rings with known 
unbalance to the front of the rotor-fixed driver rings (∅30mm) which at their back have 
piezoceramic sheets with patterned electrodes (Figure 1b). Supplying two high 
frequency voltages to a driver ring induces a travelling bending mode with elliptic 
surface motion which moves the corresponding balancer ring via contact friction. 

 
The MFC and PUM actuators are evaluated in a typical rotor dynamics setup (Figure 

1c). The flexible rotor in this setup is 1m long, with end pieces of ∅15mm, a mid piece of 
∅25mm and a flywheel of ∅150mm. The transverse stiffness of the bearing supports is 
adjustable, such that an anisotropic stator stiffness condition can be investigated. 

   
a)  b) 
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Figure 1. a) MFC force actuator (drawing).  b) PUM mass actuator (drawing). 
c) Rotor setup (section view of Matlab finite element model). 

2. ACTIVE ROTOR MODEL 

2.1 Rotor dynamic model 

The equation of motion for a discretized model of an axi-symmetric rotor with anisotropic 
stator in terms of complex coordinates and property matrices is written as (see [2],[3]): 
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  The rotor speed Ω is the time derivative of rotor rotation angle θ . The complex 
exponential is denoted eix, with i2=−1 and   denoting complex conjugation. Vectors 
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unbalance, nodal mass, and nodal MFC and PUM actuation forces, respectively, with g the 
gravitational acceleration. Matrices M, G, C, K and H are the inertia, gyroscopic, damping, 
stiffness and hysteresis matrices. Superscripts s and r denote properties of the stator and the 
rotor. Superscript d denotes properties which are different for the stator principal directions. 
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A rotor dynamics code in Matlab was developed for numerical analysis. An indication 
of the dynamics of the setup is given for a model with anisotropic stator stiffness, viscous 
stator and rotor damping and no rotor hysteresis nor actuation forces. The first two mode 
shapes at zero speed are shown in Figure 2, while a Campbell diagram is shown in Figure 3a. 
The frequencies of the first pair of forward/backward modes are nearly equal 
(21.5Hz / 22.3Hz) and constant, while the frequencies of the second mode pair are 
significantly different (92.6Hz / 98.2Hz) and speed-dependent due to the gyroscopic effect. 

 

            
  Figure 2. a) First mode shape and b) second mode shape. 

 

2.2 MFC actuator model 

The mechanical stiffness of the MFC actuators with short circuit electrodes is included in the 
rotor stiffness matrix; the stiffness increase due to open circuit electrodes (dielectric 
stiffening) is considered negligible. The electrodes of each pair of facing MFC actuators are 
connected in parallel, such that one actuation voltage can be supplied for each bending plane: 
v=vx+ivy. In the case of active control, v is imposed by a voltage amplifier (eq. 2a). In case v is 
free and only parallel resistances Rq are connected to each actuator pair, the actuator charges 
q=qx+iqy obey a balance equation (eq. 2b) (see [6]): 
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  In these equations, location vector lq is set to ±1 at the rotational degrees of freedom 
where the effective actuator torques apply. Cq, Kq, and Rq are the capacitance at constant 
strain, piezoelectric torque-voltage coupling constant and parallel resistance, respectively, for 
each actuator pair. Cq is a function of geometry, dielectric constant e33 and electromechanical 
coupling constant k33 and is equal to 3.53nF. Kq is a function of geometry, short circuit elastic 
modulus Y3 and piezoelectric constant d33 and is equal to 0.92mNm/V. The 3-direction is the 
MFC fiber direction. The actuation voltages should be in the range of ±500V. 

2.3 PUM actuator model 

The position of the PUM actuators is marked by +1 in location vector lp. At this position, 
actuation force f s

p applies which is required for the centripetal acceleration of the balancer 
weights with mass mp that are fixed at radial distance dp to balancer ring n (=1,2) which has 
rotation angle φn (eq. 3a). Each balancer ring has rotational inertia J and is driven by a torque 
Mn  which is a nonlinear function of the sinusoidal excitation voltages vnc and vns and of the 
contact pressure σn (and several other parameters, see [4][5]) (eq. 3b): 
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Figure 3. a) Campbell diagram for model with anisotropic stator, viscous stator and rotor damping. 
b) Campbell diagram for model with isotropic stator, without stator damping, with hysteretic rotor 

damping, either with () or without (-⋅-) shunt damping. 

3. FORCE ACTUATION 

3.1 Undesired shunt damping 

It is well known that rotor-fixed components may contribute to the rotor damping and hence 
may have a destabilizing effect on modes with frequencies that are lower than the rotor speed 
([2]). In the case of rotor-fixed piezoelectric force actuators, significant damping may be due 
to resistive dissipation of strain-induced currents, known as 'shunt damping'. The effect of 
unintentional shunt damping on the rotor stability is quantified for a model with isotropic 
stator stiffness, no stator damping, but with rotor hysteresis and shunt damping. To this end, 
complex eigenvalues λn are solved from the following state space equation: 
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  In this equation, a fictitious state qs=eiΩtq is employed. Matrix Hr is assembled from the 
rotor element stiffness matrices multiplied by their respective material loss factors (mostly 
steel with loss factor 0.001). The sign in front of iHr is equal to sgn(ℑ(λn)−Ω), the direction 
of circular rotor straining, and is selected correctly for any speed only after solving the 
eigenvalue problem for both signs (see [2]). Shunt damping is maximized for ω=ℑ(λ1)=22Hz 
by choosing Rq=(1−k2

33)
0.5(ωCq)−1 (see [6]). The eigenvalues of the first two forward / 

backward mode pairs, with and without shunt damping, are shown in Figure 3b. The jumps in 
ℜ(λ) are due to the hysteresis changing its effective direction. Maximum shunt damping is 
present at Ω=ℑ(λ1)±ω = 0Hz / 44Hz (first mode) and Ω=ℑ(λ2)±ω ≈76Hz / 120Hz (second 
mode). Shunt damping has the same order of magnitude as hysteretic damping. Given the fact 
that the amount of (stabilizing) stator damping is often small, it is concluded that the circuits 
that are connected to the actuators should be designed so as to avoid maximum dissipation. 

a) b) 
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3.2 Derivative feedback control 

Active control of rotor-fixed force actuators can be used to counteract disturbances, improve 
stability and/or cancel unbalance [7][8]. In this section, it is focused on the suppression of 
rotor vibration due to unbalance at critical speeds. A preparatory investigation made clear that 
a combination of speed-scheduled active balancing and damping is very effective. 

Active damping is considered first. Suppose that the rotor transverse displacement is 
measured at the node indicated by the triangle in Figure 1c (and marked by 1 in location 
vector ld). Negative position derivative feedback control is implemented by computing a 
numerical time derivative of measurement ld

Txs, multiplying it by gain kd, transforming it to 
the rotating frame and regulating the actuator voltages accordingly (eq. 5): 
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  Since rotor-fixed force actuators and stator-fixed displacement sensors are not 
collocated and numerical differentiation amplifies measurement noise, low-pass filters must 
be used in practice to avoid high frequency destabilization and noise amplification. 

To obtain the rotor response to unbalance, a nodal unbalance vector e is computed on 
the basis of assumed nodal eccentricities: 2µm at the four nodes of the flywheel and 2µm 
perpendicular to it at the node at the mid piece other end. The actuation voltages required to 
cancel the resulting modal unbalance are 325V and 429V at the first and second critical 
speeds, respectively, which is attainable. The response to unbalance z is computed in terms of 
forward and backward rotating vectors xm and xd by inverting the dynamic matrix D(Ω) of a 
rotor system with anisotropic stator stiffness and viscous damping as described by eq.6: 
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The displacement response to unbalance in the absence of control is shown in Figure 4. 
The maximum displacement occurs as forward motion at the fourth critical speed. If 
derivative feedback control is applied, this maximum response is reduced by some 90% for 
the chosen feedback gain. Note that active damping effectively merges the closely spaced 
resonance frequencies which are due to stator stiffness anisotropy, such that the response 
becomes similar to that of a well-damped axi-symmetric rotor system. 
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Figure 4. Unbalance response with and without control. 
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3.3 Preparatory experiments with speed-scheduled unbalance compensation 

The setup considered in the preceding sections is not yet ready for high speed experiments. 
Speed-scheduled algorithms for the suppression of unbalance induced vibration are therefore 
evaluated for a setup with a light weight drive shaft, which has length 1m and 10x10 mm 
square cross-section (Figure 5a). The stator of this setup is axi-symmetric, while the shaft is 
symmetric with respect to three orthogonal planes. Thin monolithic piezoceramic plates are 
mounted to the shaft surface; their voltage is controlled by voltage amplifiers via a slipring 
assembly. The speed is regulated so as to increase linearly from 0 to 50 revolutions per second 
in 30s. At the first critical speed of 25.4 revolutions per second, the first bending mode 
vibration is limited by a catcher bearing at midshaft to 3.9mm (see Figure 5b).  

A speed-dependent algorithm for active balancing is evaluated. It consists of three parts: 
1) estimation of modal unbalance using the inverse modal stiffness at speeds significantly 
below the critical speed (while δe is high in Figure 5c), 2) active balancing by the application 
of a constant voltage at speeds near and above the critical speed (while δb is high in Figure 5c) 
and 3) low-pass filtered velocity feedback near the critical speed (while δd is high in Figure 
5c). The actuation voltages are shown at the top of Figure 5c. The maximum displacement at 
midshaft is reduced from 3800µm to less than 120µm at the critical speed - a reduction of 
97% - while the response to unbalance is reduced at supercritical speeds as well.  

The considered approach gives rise to slowly changing actuation voltages, because the 
compensation of modal unbalance is in fact achieved by rotor shape control. Slowly changing 
voltages can also be used if the stator stiffness is anisotropic, because slightly different 
bending modes are excited by largely the same part of the unbalance distribution. Only very 
little energy (~0.34mJ) is required to balance a single bending mode. Balancing devices which 
are powered by ambient light or rotor straining under gravity should hence be feasible. 

The relevance of electric dissipation of strain induced currents (see 3.1) is determined 
for this setup as well. To this end, the stator damping is reduced by removing damping layers. 
The first bending mode vibration may then be changed from stable to unstable by modifying 
the passive electric boundary conditions of the actuators. A case where the rotor is only 
marginally stable at supercritical speeds is shown in Figure 5d. The conclusion from this 
experiment is equal to that from section 3.1: the electric circuits connected to rotor-fixed 
actuators should be designed so as to avoid significant dissipation. It is remarked that heavy 
rotors with comparably little piezoelectric actuator material are less prone to destabilization. 
 

              
 

            
 

Figure 5. a) Light-weight drive shaft setup. b) Unbalance response of uncontrolled rotor system.  
c) Voltages, scheduling gains δd, δb and δe and unbalance response of actively controlled rotor system. 

d) Instability due to low stator damping and resistive dissipation of strain induced currents. 

a) b) 
 

c) d) 
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4. MASS ACTUATION 

4.1 Unbalance compensation 

Rotor systems which pass several critical speeds during a run can be balanced with a single 
balancing device if a speed-dependent algorithm is used to switch between active balancing of 
different modes ([9]). The balancing device should have a low positioning time, because an 
accurate estimate of modal unbalance can be obtained only while the rotor speed approaches a 
critical speed, whereas active balancing must be performed while the speed is still sufficiently 
far from this critical speed to avoid a large transient response due to the balancer movement. 

In contrast with force actuators that often have a rather limited force capability, mass 
redistribution actuators can compensate large amounts of unbalance. Suppose that the 
unbalance distribution is ten times that assumed in section 3. The resulting modal unbalance 
can be compensated at the position of the PUM mass actuator by 65⋅10−6 kgm at the first 
critical speed and 10⋅10−6 kgm at the second. A controllable unbalance of 65⋅10−6 kgm can be 
realized by fixing weights of 2.2⋅10−3 kg at the outer radius of both balancer rings. 

4.2 Experimental actuator characterization 

The proposed mass redistribution device is manufactured by enlarging the inner diameter of 
two ultrasonic motors to ∅15mm and mounting two balancer rings at sliding bearings with 
slightly flexible supports (Figure 6). In experiments, this device is used with and without a 
balancer weight of 3.0⋅10−3 kg attached. The motor speed is set to the maximum value 
attainable and the rotation angle of one ring is measured using a laser distance sensor. Three 
reference functions are specified which switch between 0 and 52, 26 and 13 degrees, 
respectively. The references are realized by switching the power for forward and backward 
motion on and off. The resulting angles and angular speeds are shown in Figure 7. 
 

 
Figure 6. Experimental PUM mass actuator device mounted to a flexible rotor. 

   
With no balancer weight attached, a maximum speed of 1400 deg/s is reached within 

3ms. With the 3g balancer weight attached and accelerated opposite to gravity, a maximum 
speed of 800 deg/s is reached within 5ms. It follows that the mass actuator can realize any 
angular position in less than 230ms. Taking into consideration that accurate angle control at 
low speeds is possible by regulating the relative phase of the actuation voltages (see [5]), it is 
concluded that use of the PUM device as mass redistribution actuator is promising. 

In certain cases, the device might also be used as dynamic exciter for identification 
purposes. With no balancer weight attached, a reference switching between 0 and 13 degrees 
can be realized 33 times per second (see last plot of Figure 7). However, such high 
frequencies cannot be realized without considerable slip if the 3g balancer weight is attached. 
Hence, the use of this actuator as dynamic exciter is possible only at very low frequencies. 
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Figure 7. PUM response, balancer weight: a) absent, b) present. Black lines: angle (), angular speed 

(⋅⋅⋅⋅), reference (- -). Gray lines: switching of power for forward () and backward (⋅⋅⋅⋅) motion. 

5. CONCLUSIONS 

Two innovative actuators for rotor vibration control are investigated using simulations and 
experiments. Piezoceramic force actuators are found to be very attractive for active vibration 
control of flexible rotors and for active balancing in particular. Piezoelectric ultrasonic motors 
are found to be promising for active balancing of high speed rotors. Future research will focus 
on the co-simulation of electronics for piezoelectric force actuators, on accurate angle control 
of piezoelectric ultrasonic motors, on miniature non-contact power supplies for both devices 
and on improved control algorithms that make use of iterative learning. 
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