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Abstract 

 
In the paper a new approach to nonlinear secondary path model identification for feedforward 
active noise control systems is presented. In the proposed approach the nonlinear secondary 
path is modeled as Wiener system. The model of Wiener system is identified using multisine 
random excitation. This excitation used in a specially designed identification experiment 
allows to decompose Wiener model identification problem into linear dynamic part and static 
nonlinearity identification problems. Properties of the presented nonlinear secondary path 
identification method in the case of off- and on-line model identification are discussed. 

1. INTRODUCTION 

In the last two decades, fast development of microprocessor control systems and necessity to 
control plants in which nonlinearities have a substantial influence on a quality of control 
contributed to development of nonlinear dynamic model identification methods. Identification 
methods based on signal processing in the time- and frequency-domain were developed [4], 
[21]. Special interest has been given to identification of simple nonlinear models, in which 
nonlinearity of plant is modeled by a static nonlinearity connected in series with a linear 
dynamic at input (Hammerstein model [2]), at output (Wiener model [3], [15]) or at input and 
output (Hammerstein-Wiener model [1], [6]). This gives new possibilities of secondary and 
feedback path modeling for active noise control systems (ANC) that should take into account 
nonlinear acoustic effects or in which nonlinear actuators are used [5], [7], [8]. Such situation 
is often met in applications of active noise control techniques in radar, sonar, 
telecommunication and cryptography signal processing. Additionally, in many cases the 
secondary path may be time-varying and its model should be identified and updated under 
operation of ANC system [13], [16]. 

In the paper a new approach to off- and on-line nonlinear secondary path model 
identification based on Wiener system is presented. The proposed approach is based on 
multisine random excitation [10], [11]. Properties of this excitation and specially designed 
identification experiment [9] allowed to decompose overall Wiener model identification 
problem into dynamic part and static nonlinearity identification problems. To identify model 
of the linear dynamic part static nonlinearity is interpreted as a random disturbance with 
specific properties. This interpretation allows to identify model of the linear dynamic part 
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using classical methods [19], [22]. A feature of the proposed secondary path identification 
method that differ its from the literature methods [3], [21] is an easy detection of nonlinearity 
and its model identification as well as low computational complexity. 

2. IDENTIFICATION PROBLEM 

The block diagram of an adaptive feedforward ANC system [16], [17], [20] creating for 
example a local zone of quiet surrounding a single (error) microphone in an enclosure is 
shown in Fig. 1. The ANC system is working with the sampling interval T. The enclosure is 
disturbed by a noise that should be reduced using a control loud-speaker. It is assumed that 
the noise is a zero-mean random process. A reference microphone placed near to the noise 
source is used to measure the reference signal x(i). The primary path represents an acoustic 
space between the reference and error microphones. The secondary path is composed of D/A 
converter, reconstruction filter, amplifier, control loud-speaker and an acoustic space between 
the loud-speaker and error microphone. It is assumed that the secondary path exhibits 
nonlinear behaviour. A digital linear filter is used as the compensator W(z−1). Its coefficients 
are tuned on the basis of the error signal e(i) and signal x(i) filtered through a nonlinear model 
of the secondary path. The goal of the adaptation algorithm is to calculate the coefficients of 
digital filter W(z−1) that minimise the mean square value of error signal e(i). 
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Figure 1. Adaptive feedforward ANC system. 
 
The structure of ANC system implies that there is a need to identify secondary path 

model off-line before activating the ANC system. This model has a great influence on 
performance of the ANC system and in many cases it should be also identified and updated 
on-line during ANC system operation [16], [18]. The problem of on-line secondary path 
model identification (based on measurements of signals y(i) and e(i)) with active adaptation 
algorithm is a closed-loop identification problem with low signal to noise ratio if the ANC 
system works well [12], [13], [14]. It implies that for on-line secondary path model 
identification an external excitation signal added to the control signal should be used. Its 
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variance must be chosen so as not to decrease radically noise attenuation obtained by the 
operating ANC system. 

In the proposed approach the nonlinear secondary path is approximated by the Wiener 
system (see Fig. 2), i.e.: 
 

)())(()( idiefie l += ,        (1) 

 
where: i  denotes consecutive time instants, (.)f  is a real-valued nonlinear function, )(iel  is 

the nonmesarueable discrete-time output of linear dynamic part of the Wiener system, and d(i) 
is a zero-mean output disturbance. The linear dynamic part of the Wiener system is described 
by the following relation: 
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where: k  is the discrete time delay, 1−z  is a one step shift backward operator, )( 1−zA  and 

)( 1−zB  are polynomials of orders dA  and dB , respectively. In the sequel the discrete-time 

signal ))(( ief l  is called the noise free Wiener system output and is denoted by )(ien  (i.e. 

))(()( iyfie ln = ). 
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Figure 2. Wiener system. 

 
 The aim of secondary path model identification is to determine the structure ),,( dBdAk  
of the linear dynamic part as well as the corresponding parameter estimates of polynomials 

)( 1−zA  and )( 1−zB  and estimate of the nonlinear function (.)f  based on measurements of 
signals )(iy  and )(ie  taken during specially designed identification experiments with 
multisine random excitations. 

It is also worth to note that an inherent feature of the Wiener system is a nonuniqueness: 
there is no possibility to distinguish amplification of the linear dynamic part and static 
nonlinearity. To overcome this problem it is additionally assumed that variance of the 
nonmesarueable output )(iel  of linear dynamic part is equal to 1. 

3. MULTISINE RANDOM EXCITATION 

The N-sample (N even) multisine random excitation [10], [11] is defined in the time-domain 
by a sum of harmonic sines including a constant component: 
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where: 
N

π2
=Ω  denotes the relative fundamental frequency, 1,...,1,0 −= Ni  denotes 

consecutive discrete time instants, nA  are deterministic amplitudes of the sine components, 

nϕ  are phase shifts, of which 0ϕ  is deterministic (
20

π
ϕ = ) and the remaining phase shifts are 

random, independent and: 
 

• uniformly distributed on [0,2π) for 1
2

,...,2,1 −=
N

n , 

• Bernoulli distributed on the set of random events }
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3
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N
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Spectral properties of the multisine random excitation are uniquely defined by amplitudes nA  

(
2

,...,1,0
N

n = ) of sine components. Let )( Tww ωΦ  ( ∞<Φ )( Tww ω ) be a function of the 

relative frequency Tω  ( )2,0[ πω ∈T ) corresponding to the power spectral density of a wide-
sense stationary random process )(iw . The choice of amplitudes as the following  
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implies that the periodogram of N-sample multisine random excitation is equal to the power 
spectral density )( Tww ωΦ  for N equally spaced frequencies from the range )2,0[ π . Multisine 

random excitations are nongaussian random processes that asymptotically for ∞→N  turn 
into Gaussian ones. 

 Lets look at properties of the n-th (
2

,,2,1
N

n K= ) sine components 

 
)sin()( ,, nrnr

n niAiu
r

ϕ+Ω=       (4) 

 
for two N-sample multisine random excitations )(iur  ( 2,1=r ) with spectral properties 

defined by the functions )(1 Tww ωΦ , )(2 Tww ωΦ , respectively. Taking into account ensemble 

averaging it can be noticed that for every N these components are uncorrelated: 
 

{ } 0)()( 21 =−τiuiuE nn  (5) 
 
for ∞−∞= ,...,1,0,...,τ . Time-domain averaging for any particular multisine random excitation 
realisation results in the following crosscorrelation function: 
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It is worth to note that for every N: 
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Additionally, assymptotically for ∞→N : 
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The above properties of the multisine random excitation are the basis of the presented 

nonlinear secondary path model identification method. 

4. MODEL IDENTIFICATION 

During identification experiment the N-sample multisine random excitation u(i) is 
periodically repeated. Start of the data acquisition is delayed to the time instant of putting the 
external excitation into the secondary path (off-line model identification) or ANC system (on-
line model identification) so as all transients caused by inputting excitation become extinct. In 
the case of on-line model identification the excitation u(i) is added to the control signal (see 
Fig. 1). 

In the proposed approach, the secondary path is identified using measurements of 
signals e(i) and y(i) (in the case of off-line model identification y(i)=u(i)). The corresponding 
model is estimated on the basis of mN-sample secondary path input data sequence 
{ })1(),...,1(),0( −mNyyy  and mN-sample output data sequence { })1(),...,1(),0( −mNeee . It is 
worth to mention that to estimate the secondary path model on-line measurements of the 
external multisine random excitation are not used. 

The method of data processing used in the proposed approach is based on the averaged 
)(ie  for time instants i=0,1,…,N-1 values of secondary path output signal: 
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and obtained in the same way averaged values )(iy  of secondary path input signal in the case 
of on-line model identification or values u(i) of the multisine random excitation in the case 
off-line model identification. The averaged N-sample data sequences )(iy  and )(ie  
(i=0,1,…,N-1) may be calculated recursively using an algorithm of on-line mean value 
calculation. 

In the case of off-line secondary path model identification properties of the multisine 
random excitation )(iu  and equation (1) imply that for linear dynamic part of the Wiener 

system the corresponding noise free output )(ien  may be written as: 
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where a is a constant value, )(1 iv  is a zero-mean random disturbance. This representation of 

the noise free system output )(ien  follows from the fact that under steady state conditions the 

nonmesarueable discrete-time output )(iel  of the linear dynamic part of the Wiener system is 
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the sum of a multisine random signal and random noise. Its transformation by the nonlinear 
function (.)f  may result in a constant component and additional sine components that are not 
present in the multisine random excitation )(iu . It means that for all frequencies nΩ  

(
2

,,2,1
N

n K= ) additional sine components with phase shifts being a function of the random 

phase shifts tϕ  (
2

,,2,1
N

t K=  and nt ≠ ) may appear. They are represented in the model (10) 

by the disturbance )(1 iv . Independence of the random phase shifts tϕ  (
2

,,2,1
N

t K= ) implies 

that the disturbance )(1 iv  and multisine random excitation )(iu  are uncorrelated. 
 It follows from the above Wiener system interpretation that estimates of its linear 
dynamic part model parameters may be calculated using N-sample averaged values )(ie  of 
secondary path discrete-time output and input )()( iuiy =  ( 1,,1,0 −= Ni K ) using 
instrumental variable identification method [19], [22]. Taking into account properties (7) and 
(8) preciseness of the obtained parameter estimates may be increased by increasing the period 
N of multisine random excitation or (and) by averaging estimates obtained for different 
realizations of N-sample multisine random excitation. 
 In the next step estimates of secondary path linear dynamic part model parameters are 
used to calculate estimates of the output )(iel  of this part for the time instants 

1,,1,0 −= Ni K . These values together with averaged values )(ie  1,,1,0 −= Ni K  values of 
the secondary path discrete-time output signal can be used to identify the nonlinear function 
(.)f . A plot of )(ie  versus )(ˆ iel  is a good tool that may be used to detect nonlinearities in the 

secondary path. 
 Calculation of secondary path model estimates on-line using the averaged signals 

)(iy and )(ie  and its update may be done after each repetition of N-sample multisine random 
excitation. It follows from statistical properties of the noise that the averaged signals )(iy and 

)(ie  are unbiased and consistent estimators of the noise free steady state secondary path input 
and output responses for one period of the external multisine random excitation. Their 
variances decline with the increase of the number m of processed data segments. 
 

5. EXAMPLE 

The secondary path of an adaptive ANC system creating a local zone of quiet in an enclosure 
and working with the sampling interval 0.001s was simulated as a Wiener system with the 
linear dynamic part being a FIR filter (250 coefficients) and static nonlinearity of the form of 
a sine function. To identify the secondary path model the 1024-sample multisine random 
excitation u(i) with spectral properties defined by the function 1)( =Φ Tww ω  ( )2,0[ πω ∈T ) 

was used. The secondary path model was estimated using the proposed approach and m=1 
data segment. In Figs 4 and 5 estimated frequency response magnitude of linear dynamic part 
of the Wiener system and static nonlinearity are compared with the corresponding 
characteristics of the simulated secondary path, respectively. 
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Figure 3. Frequency response magnitude of linear dynamic part of the Wiener system (plant -
solid line; identified model - dotted line). 

 

Figure 4. Static nonlinearity (plant - solid line; identified model - dotted line). 

6. CONCLUSIONS 

In the paper a new approach to off- and on-line nonlinear secondary path model identification 
and update under operation of ANC system was proposed. The method uses N-sample 
external random multisine excitation that is periodically repeated. In the proposed approach 
the nonlinear secondary path is modeled as Wiener system. The multisine random excitation 
used in a specially designed identification experiment allows to decompose Wiener model 
identification problem into linear dynamic part and static nonlinearity identification problems. 
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