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Abstract 
 
An impedance-based approach is applied to the general fluid-structure interaction problem. 
For a passive finite-size lineally elastic body or structure of arbitrary configuration in fluid 
medium, the following new results are obtained. First, the range of allowable values of the 
sound power absorbed and scattered by the body is found, and a simple equation for the curve 
that bounds the range is derived. Second, explicit boundary conditions of the impedance type 
on the body surface are obtained for the limiting cases – for the most efficient absorber, the 
best scatterer, and for other bodies that possess extreme absorption and scattering properties. 
It is shown that the efficiency of the best absorber is several orders of magnitude higher than 
that of commonly used absorbers. Possible ways of achieving the extreme acoustic properties 
are discussed. Illustrative examples are presented. 

1. INTRODUCTION 

The problem of interaction of a vibrating elastic body or structure with surrounding fluid 
medium or, in other words, the problem of radiation, scattering, and absorption of sound by 
elastic bodies in fluid has been a subject of interest for many years. Despite the vast literature 
on the topic (it numbers, together with the corresponding works in electromagnetic theory, 
thousands of papers and dozens of monographs – see, e.g., [1-3]), there are still practically 
important problems that remain unsolved. These are, for example, the problems of the black 
body and the best absorber (that, among all bodies of the same configuration, absorbs 
maximum incident field energy), of the best scatterer and of other bodies that possess the 
limiting acoustic properties. Even these limiting properties themselves are unknown in most 
cases to say nothing about such questions as how to construct the most efficient absorbers and 
non-reflecting surfaces, do black bodies exist in Nature and so on. 
 The commonly used approach to treating the fluid-structure interaction problem consists 
in solving a set of differential equations governing the fluid and structure vibrations together 
with the conditions at all boundaries including the structure-fluid interface.  

In this paper, a new impedance approach is used [4, 5]. It is based on describing the 
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subsystems (the medium and structure) by the special impedance characteristics (matrices) 
defined with respect to their interface. Three impedance matrices are needed here – one 
matrix describes vibrations of the structure and two matrices characterize the fluid vibrations. 
The full solution of the fluid-structure interaction problem is then written in terms of these 
three matrices. The solution thus obtained is compact, physically transparent and much 
simpler than those obtained by the commonly used methods. This allows one to further use it 
in treating more difficult problems mentioned above. Several such problems are already 
solved in [4, 5] - the variational problem of the best absorber, the problem of how to make an 
arbitrary body to be acoustically transparent, and others.  

In the present paper, a new problem (of the constrained best absorber) is posed and 
solved. This variational problem is formulated as follows:  among all bodies (structures) of a 
given configuration, find such that absorbs maximum incident sound power under condition 
that the scattered sound power is fixed. Analytical solution is obtained for this problem. It 
follows from the solution that the values of the sound power absorbed and scattered by a 
passive linearly elastic body cannot go beyond a certain bounded range. This range is 
graphically presented below and a simple equation for its boundary is given. Several 
particular cases of the constrained best absorber, including the most efficient absorber, are 
studied. For them, the surface impedances are explicitly derived and a way of their practical 
implementation is discussed. Illustrative examples are also presented. 

2. BASIC EQUATIONS OF THE IMPEDANCE THEORY 

The main assumption and basic equations of the impedance theory are the following. 
Consider a finite-size elastic body (structure) of arbitrary geometry immersed in an acoustic 
fluid medium. The body occupies a volume V  and has an outer surface  which is the 
interface with the fluid. The medium is not necessarily homogeneous and unbounded. It is 
deemed inviscid thus exerting only normal loads on the body surface. Both the body and fluid 
are assumed to obey linear differential equations. Time dependence of all field variables is 
assumed to be harmonic and exponential coefficient 

A

)exp( tiω−  is abbreviated throughout the 
paper,  being circular frequency. ω

In the fluid medium outside the body, some acoustic sources are present. In the absence of 
the body, they produce a pressure field with complex amplitude , which is called the 
incident field. In the presence of the body, the pressure field component  scattered by 
the body also appears. The total pressure field at a point with coordinates 

)(xpi

)(xps

x  in the exterior of 
the body is, thus, represented by the sum of these two components (radiation is excluded), 
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The problem is stated as to determine the scattered field component  if given is the 
incident field component . 

)(xps

)(xpi

To introduce the needed impedance characteristics, it is convenient to represent the 
surface  of the body as a set of  small-size surface elements A N NnAn ,...,2,1, =∆ . The 
number  is not fixed but the dimensions of the elements are assumed to be less than half of 
the fluid wavelength. The pressure, normal velocity and other field characteristics may then 
be taken as uniform within each element and the quantities continuously distributed over 
surface  may be represented on  as -vectors. For example, the total pressure field, 
equation (1), and the corresponding fluid particle normal velocity  are represented on  

N
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as the following -vectors N
 

p =   v = [ ] ,)(,...,)( 11
T

NN AypAyp ∆∆ [ ]TNyvyv )(),...,( 1 . (2)

 
The components of vector p are the complex amplitudes of the forces acting on areas  and 
vector v consist of  complex amplitudes of the outward normal velocity,  being the 
coordinates of a point of the surface element 

nA∆
N ny

nA∆ . Similarly, -vectors  pN i , vi  and  ps , vs  are  
introduced to describe the incident and scattered fields on . Relations between the pressure 
vectors and velocity vectors can be written via impedance NxN-matrices.  

A

    Three such impedance matrices are needed for solving the scattering and absorption 
problem. One matrix, the body impedance matrix Z, characterizes the scatterer. It is a matrix 
of the input surface impedances of the body in vacuo. Two impedance matrices, Zi  and Zr , 
are necessary to characterize the fluid. Matrix Zi  of the internal impedances of the fluid is 
defined similarly to the body matrix Z and represents the matrix of the input surface 
impedances of isolated volume V filled with fluid. Matrix  Zr  of the radiation impedances is 
defined as a matrix of the input surface impedances of the fluid in the exterior of surface A 
with all the acoustic sources in it switched off. It can be shown that the scattered and incident 
field components satisfy the following equations 
 

pi  + Zi vi = 0, pi  + ps  + Z(vi  + vs ) = 0,  ps  - Zr vs  = 0.  (3)
 

The three impedance matrices are assumed to be complex-valued and symmetric with respect 
to the main diagonal. Physically, the symmetry means that the reciprocity theorem is valid in 
the elastic body and fluid. For bodies of simple geometries in homogeneous unbounded fluid 
the matrices may be obtained analytically. In general case, they can be computed using one of 
the available numerical methods. 

Let us introduce two square scattering matrices of order ,  and , that relate the 
pressure and normal velocity of the scattered field on the interface  correspondingly to the 
pressure and normal velocity of the incident field on  in the form of linear equations 

N S Q
A

A
 

,is Qvv =    is Spp = (4)
 
Using relations (3) one can obtain the following equations for the scattering matrices 
 

( ) ( )ZZZZQ ir −+= −1 ,      ( ) ( ),1 YYYYS ir −+= −  (5)

 
where  is the identity matrix of order  and the mobility matrices   are the inverse 
impedance matrices , ∅, .

I N kY

kZ =k , ri  Equations (5) express the scattering matrices through the 
impedance and mobility characteristics of the medium and scatterer. They give the solution to 
the scattering problem that is very similar, by the form and essence, to the well-known 
solution for the reflection coefficients obtained by C. Fresnel in the simplest case of plane 
waves reflecting from a plane interface between two fluid media. The proposed theory can, 
thus, be regarded as a straightforward extension of the Fresnel’s theory to the general case of 
the scattering problem. However, in general case, three impedance (mobility) matrices are 
needed instead of two in the Fresnel’s case. The reason is that, in the particular case of two 
connected fluid half-spaces, the internal and radiation impedances,  and , coincide. iZ rZ
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3. PARTICULAR CASES 

In this section, particular cases of the impedance theory that are necessary for further 
consideration are briefly documented. More details can be found elsewhere [4, 5]. 
The first case is related to acoustically transparent (non-scattering) bodies.  
It is apparent from equations (5) that a body of volume V  does not scatter sound and its 
scattering matrices are zero matrices, 0== SQ , if its matrix of the in vacuum surface 
impedances coincides with the matrix of the fluid internal impedances 
 

.iZZ = (6)
 
It follows from equation (6) that it is impossible to construct a non-scattering passive coating 
that is made of a locally reacting material. It is because the fluid-filled volume V  is a 
vibratory system with low damping and high quality resonances, so that its matrix of the 
surface impedances, , is far from being diagonal (Note that the impedance matrix of a 
locally reacting system is always diagonal). 

iZ

      One way of implementing equality (6) in practically interesting cases is to use active 
structures, e.g. smart skins. Such an active structure should be of the global type in that the 
active force applied to a certain part of the body surface should be controlled by the field 
quantities measured at other parts of the surface. A global feedback control system of this 
type is described in paper [4].  

 The second important particular case is an impedance solution of the best absorber 
problem. The sound power entering the absorber is, by definition, equal to 
 

ii vQIRQIvRvvZvvpv )()(
2
1
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1)Re(
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2
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(7)

 
where  and  are the normal velocity and pressure vectors as defined in Eq.(2), 

 is an in vacuo impedance symmetric matrix of the absorber, 
v p
iXRZ += R  and X  being, 

correspondingly, the resistance and reactance matrices. The problem of the best absorber can 
be formulated as follows: find such an impedance matrix Z  that renders maximum to Φ  or, 
in other words, for which the Hermitian form (7) is stationary. Giving matrix Z  a variation 

XiRZ ∆∆∆ += , R∆  and X∆  being arbitrary symmetric real-valued matrices of small matrix 
norm, considering the matrices R∆  and X∆  as independent variations of Z  and going 
through the matrix algebra, one can find that the absorber impedance matrix Z  is equal to the 
Hermitian conjugate of the radiation impedance matrix: 
 

∗= rZZ    or   ., rr XX   RR −== (8)
 
By analyzing variations of the absorbed power in the vicinity of (8), it can be shown that this 
stationary value is the maximum value. A body with the surface impedance matrix (8) is, thus, 
the best absorber and, among variety of bodies of the same configuration, it absorbs 
maximum of the incident field energy. This maximum value is equal to 
 

.)()(
8
1 1*

max iirrrii pYZIRZYIp ++= −∗∗Φ
(9)

 
      Some general conclusions can be drawn directly from equation (8). First, the properties of 
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the best absorber do not depend on the incident field and are fully determined by the acoustic 
environment, i.e. by the radiation impedances. Second, a body with a locally reacting surface 
cannot be the best absorber. It follows from the fact that the radiation impedance matrix is not 
diagonal in most real situations. The condition (8) also means that the best absorber should be 
of the resonant type: its reactances must compensate the reactances of the surrounding 
medium, . As a result, the best absorber is at the same time a good scatterer: the 
absorbed power is equal to the scattered power. Besides, the resistances of the best absorber 
are equal to the radiation resistances. This is similar to the optimal load condition in electric 
circuit theory. Equation (8) can, thus, be interpreted as a matching condition of the absorber 
and acoustic environment. Note that the link between the amount of the absorbed power and 
the radiation impedance has been reported earlier, though is simplified 1-D form, in the 
acoustic literature [2, 6]. 

0=+ rXX

      One of the rare examples a natural best absorber is a gas bubble in liquid,. The bubble is 
assumed to be a pulsating sphere of a small radius a having one vibratory degree of freedom. 
 

 
Fig.1. Sound power absorbed by the best spherical absorber of radius  (solid line) and by a 

pulsating air-bubble in water (dashed lines). The curve 1 corresponds to the optimal internal 
damping of the bubble that is equal to the resonant radiation damping; the curves 2 and 3 
correspond to internal damping, which is equal to 0.01 and 50 of the optimal value. The 
absorbed power is normalized with the incident power 

a

cpa i ρπ 2/22  
 
In Figure 1, the solid line corresponds to the relative absorption cross-section, i.e. the 
absorbed sound power of the best spherical absorber normalized with the incident power 

cpa i ρπΦ 2/22
0 = . Other curves in Fig.1 correspond to absorption of a gas bubble (more 

exactly, an air-bubble in water). In the frequency range of our concern, x =ka is small and the 
reactance of the air-bubble is spring-controlled giving, together with mass of the entrained 
water, the natural frequency . Dashed line 1 in Fig.1 corresponds to the particular 
bubble of radius a=3.3mm whose internal damping (due to heat transfer and viscosity) is 
equal to the damping due to radiation. In this case, both conditions (8) are satisfied and the 
air-bubble in water behaves like the true best absorber. If the bubble radius is smaller or 
greater than 3.3mm the internal damping of the bubble becomes greater or smaller than the 
radiation damping at , and the absorbed power decreases (dashed lines 2 and 3 in 

014.00 =x

0xx =
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Fig.1). Note that the relative cross-section of the corresponding matched sphere that has the 
specific impedance ρc is equal to four, i.e. three orders of magnitude smaller than that of the 
best absorber. 
 Similarly, the problem of the best scatterer can be solved. The impedance matrix of the 
best scatterer should be pure imaginary (the body is lossless) and close to minus radiation 
reactance matrix. The maximum possible scattered power of a passive body is four times the 
maximum absorbed power (9) – see details in [5]. 

4. CONSTRAINED BEST ABSORBER 

Consider now the following variational problem: find such an impedance matrix Z that 
renders maximum to the absorbed power (7) if the scattered power  
 

F = ( ) iriss QvRQvpv ∗∗∗ =
2
1Re

2
1 ,

(10)

 
where  is a matrix of the radiation resistances and  is the scattering matrix 
given in equations (4), (5), is fixed and equals to F

)Re( rr ZR = Q
0 . The solution to this problem is obtained 

by the method of the Lagrange multipliers. Here are some results. 
    A solution to the problem exists not for all fixed values of the scattered power, but when it 
exists it is unique. Introducing the following notation for the normalized scattering and 
absorption powers 

       ,,
maxmax

0

Φ
Φϕ

Φ
==

F
f          

 
where  Φmax  is the absolute maximum value of the absorbed power (9), it can be shown that 
the constrained best absorber should have the scattering matrix Q  that is proportional to the 
scattering matrix Q0  of the best absorber 
            0QfQ =          (11) 

and the surface impedance matrix that is equal to 

      .))(( 1
0 rir ZQfIZZZ −++= −          (12) 

 
The maximum value of the absorbed power relates to the fixed value of the scattered power 
according to the following simple equation 

 .ff −=ϕ 2 (13)

 
 Let us consider more closely Eq.(13) and properties of the constrained best absorber. 

One of the consequences of solution (11)-(13) is the existence of a finite range of allowable 
values for the absorption and scattering powers of passive bodies. In Fig.2 this range is 
represented on the (f, ϕ) plane. From below this range is bounded by the f-axis and from 
above – by the curve (13). Each point of the range corresponds to a body with a certain 
impedance matrix and the scattering and absorption powers represented by the coordinates of 
this point.  
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 The plot shown in Fig.2 is universal: it holds for passive bodies of any geometry at any 
frequency, while all the individual features of scatterers and absorbers, as well as those of the 
incident field, are enclosed in the value Φmax  (Eq.(9)), which serves as a normalizing factor of 
the power value and is assumed to be finite. 
 

Fig. 2. Allowable values of the scattered and absorbed power of a passive body normalized 
           with the absolute maximum value of the absorbed power (9) 
 
The plot in Fig.2 reflects many general properties of scatterers and absorbers. In particular, it 
suggests that a finite-size body that absorbs sound energy but scatters nothing is impossible; 
i.e. if the scattered power is equal to zero, the absorbed power should also be zero. By 
contrast, there is an infinitely large number of bodies that can scatter without absorption; i.e. 
if ϕ=0,  f  can take any value from 0 to 4, which corresponds to a multitude of bodies with all 
of the possible reactive impedances. If the absorption power takes some fixed nonzero value 
within the interval [0, 1], the scattering power can take an infinite number of values.  
 The plot shown in Fig.2 is useful for developing absorbers and scatterers with given 
physical properties. For example, if it is necessary to develop an efficient absorber, it is 
natural to construct it as the best absorber or a body close to it with impedances (8) and 
absorption power (9), which corresponds to the vicinity of the absolute maximum of 
absorption, i.e. the point with coordinates (1, 1) in Fig.2. If an efficient scatterer is required, it 
can be found near the point (4, 0). If it is necessary to design non-scattering (non-reflecting) 
coating, it should be sought in the vicinity of the origin of coordinates, where the inequality 
f<<1 is valid. A characteristic feature of this region of Fig.2 is that, here, the ratio of the 
absorbed power to the scattered power may take any values from zero to very large ones. 
Indeed, for bodies that correspond to the points on the f-axis in the Fig.2, this ratio is equal to 
zero, while for bodies corresponding to points of the boundary curve (13) it is expressed as 
 

      12
−==

ffF
ϕΦ       (14) 

and, depending on f, may be arbitrarily large. Thus, this region contains coatings with low 
scattering and virtually any ratio between the absorption and scattering powers. In particular, 
the coating with the greatest value of ratio (14) should have surface impedances (12) and 
scattering matrix (11).  
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5. IMPLEMENTATION OF THE RESULTS 

Analysis shows that the efficiency of existing absorption and non-scattering means [6] is very 
far from the theoretical limiting values of the best sound absorber and other bodies with the 
extreme acoustic properties considered above. Hence, there is a real perspective to improve 
the absorption efficiency by implementing the above obtained surface impedances of the 
bodies using, for example, appropriate coatings.  
 The main feature of the bodies with extreme properties is a surface of global reaction. 
The response of such a surface to a point excitation is noticeable not only at the driving point 
(as in locally reacting surfaces) but at all other points. As a result, the surface impedance 
matrices (6), (8), (12) are fully populated. Implementation of such globally reacting surfaces 
is very difficult using either smart skins or passive coatings, since each two points of the 
surface should be coupled. However it is possible to approximate them with the help of 
passive surfaces of extended reaction. Such surface is thought as a set of discrete identical 
elements covering the body surface with appropriate coupling between neighbouring 
elements. The present author verified on simple examples (plane absorbers) that the 
absorption coefficient of a surface with extended reaction is not so high as that of the surface 
with global reaction (of the best absorber), but is considerably higher than the coefficients of 
locally reacting absorptive surfaces usually employed today. Besides, surfaces with extended 
reaction are rather simple and can be implemented using commercially available materials.  

6. SUMMARY 

A new variational problem of a constrained best absorber is formulated and analytically 
solved. Several new general results concerning vibrational fluid-structure interaction follow 
from the obtained solution. First, for any passive elastic structure, there exists a finite range of 
allowable values of its absorption and scattering powers. Second, explicit equations for 
surface impedances for the structures that possess limiting absorption and scattering 
properties are derived. A way of achieving such properties in practice is discussed. 
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