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Abstract

In this paper, we consider the problem of blindasafion of sources mixed by a convolutive
system, expressed in the time-domain. We presemetaod based on fourth-order statistics
and Wiener filtering. The technique is based onntim@mization of two criteria based on the
cancellation of the fourth-order cross cumulantMeein the contributions of all the estimated
sources on each sensor, calculated by WienerifidieiThe matrix separation is updated
iteratively by the contributions of the outputs oeered by Wiener filtering. These
contributions are inserted in the separation proeed order to get high separation quality of
the data. Finally, simulation results illustrate thalidity of our approach and show that it
leads to improved separation performance.

1. INTRODUCTION

Blind Source Separation (BSS) or Independent CompioAnalysis (ICA) is a basic and
difficult problem in signal processing. It consigtgetrieving a set of unknown source signals
from the observation of their mixtures, assumingrehis no information about the original
source signals. Among many open issues, recovéregources from their linear convolutive
mixtures remains a challenging problem. Many sohgi have been addressed in the
frequency-domain, particularly for the separatibmaon-stationary audio signals. In the BSS
of stationary signals, two problems occur in theetidomain. It has been proved [1] that
convolutive mixtures are separable, that is, thdependence of the outputs insures the
separation of the sources, up to a few indeternesadHowever, the meaning of the
independence is not the same in the convolutive iasidntaneous contexts. Blind source
separation methods depend on the nature of theriontto measure the statistical mutual
independence between the output signals.

In this paper, our approach is based on the maatiz of a criterion using the fourth-order
cumulant matrices between the estimated outputdhengrojections of these outputs on each
sensor. Several solutions have been addressdtwk inaise of instantaneous mixtures [2,3]
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based on fourth-order cumulants and using a retersignal. Other global approaches are
based on the maximization of a criterion calledbatkast function [4,5]. In this case, several
approaches have been generalized through the uséeoénce signals. The first works have
been restricted to the case of instantaneous souixeires [6] while results concerning
convolutive mixtures have been presented more tiydéih. The second problem comes from
the inherent indeterminacy of the definition of dwirce in the BSS model. Indeed, any linear
transform of a source can also be considered asraesand there is an infinity of separations
that can extract sources. Some constraints carddedaeither on the source signals or the
separating system (Minimal Distortion Principle)[8h [8], one proposition is to choose the
separator which minimizes the quadratic error betwsensors and outputs, also known as
Wiener filtering. Our approach is based on thewdaton of fourth-order cumulant matrices
and using the contributions of all sources on esgtsor in order to diagonalize these matrices
jointly. In [9,10], we used the mutual informatiohoutputs as an independence criterion and
we proved that testing the independence betweenathiibutions of all sources on the same
sensor at same time index also leads to separability, we simplified the peledence
criterion using Wiener filtering. In this papehet source separation matrix is updated
iteratively by the projection of the outputs on semsors calculated by Wiener filtering.

In section 2, we introduce the model. In sectiorw8, describe our algorithm with added
contributions of all sources on each sensor. Austithtion of the separating algorithm and
simulation results is also developed. A conclussogiven in section 4.

2. MODELING THE PROBLEM

Let us consider the BSS model of a convolutive orxtwith N sources andN sensors
illustrated in Figure 1. We assume that sous@g (i = 1,...,N) are mutually independent.
Each sensox(n) (i = 1,...,N) receives a linear convolution from each sowg(® at discrete
time n. The goal is to recover the source procesge$ i/{1,...,N} using only the
observatiorx(n). The relationship between the observations anddlieces can be expressed
through the following linear model:

N
Xj(n)zzaji*‘r':(') 1)
i=1
Equation (1) can be also written in Z-transform as:

x(n) = [A(2)]s(n) )

whereg; represents the impulse response from soutcesensol. ** denotes the linear
convolution operator. The aim of BSS is to findelt with impulse responség between
sensori and outpuf, such that the output vectg(n) estimates the sources, up to a linear
filter:

V(=3 3 B0 b @
y(n) =[B@)x(m) (4)

It is useful to define the global filter by the lfmhing impulse response:
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Figure 1. Mixing and demixing system

If yi(n) is any linear filtering of one source, then thetabution of this source on the first
sensor is calculated by a (possibly non causal)n@idilter Wy;(z) such that the quadratic

error betweernx;(n) andy;(n) :

E(x(n-w* y( ) is minimized (7)

Therefore, the purpose of using Wiener filteringtés minimize the mean-square error
between their output and a required output (sear€ig). In [9,10] we proved that using the
projection of the outputs on the same sensor aadsl to separability, without making an
independence test of delayed outputs (for morelldethout Wiener filter, see [9,10]). The
contribution of the sourceon themth sensor is thus given by :

L
Zoi(M =2 W(R y(n- & ©)
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Figure 2. Separation Model

3. CONTRAST FUNCTIONS

3.1 Separability

In specific cases, testing the independence betw@gnandy;(n) is sufficient [6] to ensure
the separation. For example, for i.i.d. normaligedrces, the sum of fourth-order cumulants
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of the outputs is a contrast function [7] undemadition on separating filters [6]. For linear
filtering of i.i.d. signals, the same result is @ibed after a first step of whitening of the data.
However, in a general case, delays must be intemluo the contrast function and the
separability of convolutive mixtures is obtainedlyowhen the components of the output
vectory(n) are independent in the sense of stochastic vasialylén) andy;(n-m) have to be
independent for all discrete time delays For example, a solution is to minimize the
criterionJ :

3= Y1y, y(n-m) 9)

iZj m

wherel represents the mutual information (10js nonnegative and equal to zero if and only
if the components are statistically independent.

1) = [ p,(pin| 2 |y oj1
R |'| P, (¥)

The delayan can be taken in aa priori set [-K, .., K], which depends on the degree ef th
filters corresponding to the whole mixing-sepamtisystem. The criterion (9) is
computationally expensive. In [3], a gradient-basdégbrithm minimizes (9): at each time
iteration, a random value of delay is chosen and(yi(n), y;(n-m)) is used as the current
separation criterion.

In previous papers [9,10], we studied the sepatglof the contributions of the sourceand

j, projected on the sensor, Zyi(n) andzy(n) (4) versusyi(n) andy;(n). We showed that it
was simpler and that no time del@ym)was needed. Testirlgy;(n), y;(n))=0 and I(zni(n),
Zyj(n))=0, ensures the separability, as well as the minitiwzeof the mutual information of
the outputsl(zni(n), zn(n))=0. The criterion is much more easier to test thasm nutual
information of delayed outputs as it was verifiadan iterative way. Moreover the outputs are
directly the contribution of the sources on thegessed sensor.

3.2 Separation criteria based on the fourth-order cumulants

In [10], we studied the separability gf(n) and we used the mutual information such as an
independence criterion but the proof of separgbiliatn be also exploited with another
independence test. In [11], we used a fourth-ooidenulant based method to compute the
separation matrix BJf. We propose here to compare two other criterigebaon the
cancellation of fourth-order cross-cumulants betwie Wiener outputsi(n):

Cl= min[z __Z_m|cum( o B B0 7 (11)
Cc2= min[z ._Zm‘cum( Zir v %o ;ﬂ (12)

As in [3,9], the criteria C1 and C2 are minimised &n iterative way. The convolutive
separative filters B(z) are updated with the eteom C1 or C2. A Wiener step is added at the
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output of the separating phase. The criteria amneimized iteratively, with the following
algorithm :

Initialization :y(n)= x(n)
Repeat until convergence :
- Estimate the criteria C1 or C2 between the contigns :z(n)=W(z) y(n)
- Update B(z) € B(z)-uC1
- Compute the outputs of the separating filigfs)=B(z) x(n)
- Compute the Wiener filtetd/(z), and the new contributiong(n)=W(z) y(n)
- Replace y(n) € [z11(n), z22(n))]

The convergence and the behaviour of the algorithnmvestigated in the appendix. The
performances are shown in figures 1 and 2 with Ktian results. Each source (of 1500
samples) is constituted of the sum of a uniforndoen signal and a sinusoid. They are mixed
with filters :

(13)

1+022 +0%X° 05 03+ 0¢Y
H(2) =
05+0% +0.%¥ # 02+ 0Y

The quadratic errors betweejfn) and theexact contribution are plotted in Figure 3 for each
iteration. They are averaged on 50 realizationthefsources. For a common value of the
parametemn=0.03, the black and blue curves respectively repred@ntMSE of criteria C1
and C2. The red curve represents the MSE of arite@2 wherex(n) are the whitening
sensors. In this case, C2 is also a contrast fumclihis result has been obtained in [12] using
the approach of reference signals. It shows gosdltsefor the convergence and the residual
quadratic error. However, C1 is the more efficiaigiorithm in term of convergence speed. It
can be explained by the fact that C1 aims at th@mization of more cross-cumulants that
C2. For example, in a 2 source, 2 sensor schemeu31 cancel 6 cross-cumulants whereas
C2 minimizes only 2 cross-cumulants.
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Figure 3. MSE of the criteria C1 and C2
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In Figure 3, the parametgrwas optimafor C2 (with whitened sensors - red curve). Thalfin
MSE in that case is equal to 5 1(versus 8 10for C2 and 2 18 for C1). In Figure 4, the
parameter was optimal for each criterion in termM$E and the speed convergence
behaviour is compared. For an equal MSE of 3, ie see that C1 (black curpe0.01) has
still the better convergence speed versus C2.

08 T T T T T T T

07

0 50 100 150 200 250 300 350 400
iterations

Figure 4. MSE of the criteria C1 and C2

4. CONCLUSIONS

In this paper, we have addressed the source sipambblem in the case of convolutive
mixture, expressed in the time-domain. We have ldeee an algorithm based on the fourth-
order statistics and Wiener filtering. The methedased on the minimization of two criteria
based on the cancellation of fourth-order crossutanis between the contributions of all the
estimated sources on each sensor, calculated byewfdtering. The matrix separation is
updated iteratively by the contributions of the puis recovered by Wiener filtering. We
show that the implementation of such an approaldwal appreciable improvement of the
qguality of the source separation. Simulation exasmphre given to demonstrate the
performance of the proposed methddhe test is easier and shows good results on ation]

5. APPENDIX

Let be a 2 sources 2 sensors scheme. For sakenphiagty, we call here sources the two
contributions on the first sensor. Seyn) is equal to : x(n=s(n+ s(n. zn are the
contributions of the sources on the first senstcutated by Wiener filtering, they are given
by :

2= 3 W(R ¥ B (14)

The DFT of filterswi(k) are computed at frequency Hims a function of the cross-spectra
ryixa(f) of xa(n) andy;(n), andyyj(f) the spectra ofi(n) :
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Yona(F). Vvaraf)
W, ( ) = D2t Loy ( f) = Lrexa 15
ll( ) le( f) \M ( ) le( f) ( )

The two first contributions are given in functiohtbe global filter G(z):

GO r(H+8.(NBLHr N

Z,(f)= ) Gll( f)Glz( f)y51( f) +|G12( f)| ysz( f)

(H+

S(f

A Vo ()
2 G G : (16)
le(f)=|Gﬂ(f)| V(1) + G (NG, (fy, f)Sl( f)+Gzl(f)Gzz( Vsl £)+|GA T VoL f)sz(f)
%) %)

The algorithm has two parts : a separating stdpvield by a Wiener filtering. The two parts
are iteratively updated and exploits the seconerosthtistics (decorrelation betwegm) and

s,(n) and fourth-order statistics (independence betwegnand s,(n)). At the convergence
of the algorithm : the two parts converge. Conaggrihe Wiener step, we have :

G () Ve (F)+ G ()G F )y ()

M - Gy(f)
Yo (1)

‘G12(f)‘ Vsa () +Gip(1)Gua(f)ysi(F) M - G,(f)
Voo(F)

(G =[G D [ral D+ [ Bl N =[G D |ysd D=0

B 2 B 2 & G(f)=0;0rG (f)=1
[Caa( ) =[Ga( D [y D+ [T =[Gl N[ [ys 4 N =0

We can eliminate the trivial solutionz;(n)=0 or x;(n)). z;;(n) are not zero, knowing that the
Wiener filter maximizes the correlation between the#puts of the separating step and the
sensorsz;(n) are not equal to the sensors, knowing that :

> > |euntZ, % 7 7)=0 (17)

m i, j ki

It remains thatz,(n) = s(1 and z,(n = s(p. In the same way, i&(N=F(s(N)+ EL 1),
we obtain thatz, (1) = F(s( N)and z,(nN = F,(s(n).

As only second-order is used, it means that wedcoetover any orthogonal signass(n)

and s',(N such that their sum is equal to the first sengdn)=s,(0+S( N as the
decomposition is not unique.

Suppose that we recoverz;(N=s(N=ag ML £ ¥ and Z,(N=sS,(N=y g Mo £ ¥ with
parameter$a,f,y,0) such thats',(n ands',(n are orthogonal and,(n=s,(N+ $,( M.
The problem is then equivalent to an instantaneoosture and the criterion

> |euntZ, 3. z. 2)is zero only forz,(n =51 and (7= s(1.

i.j k) i
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