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Abstract 
 
In this paper, we consider the problem of blind separation of sources mixed by a convolutive 
system, expressed in the time-domain. We present a method based on fourth-order statistics 
and Wiener filtering. The technique is based on the minimization of two criteria based on the 
cancellation of the fourth-order cross cumulant between the contributions of all the estimated 
sources on each sensor, calculated by Wiener filtering. The matrix separation is updated 
iteratively by the contributions of the outputs recovered by Wiener filtering. These 
contributions are inserted in the separation procedure in order to get high separation quality of 
the data. Finally, simulation results illustrate the validity of our approach and show that it 
leads to improved separation performance. 

1. INTRODUCTION 

Blind Source Separation (BSS) or Independent Component Analysis (ICA) is a basic and 
difficult problem in signal processing. It consists in retrieving a set of unknown source signals 
from the observation of their mixtures, assuming there is no information about the original 
source signals. Among many open issues, recovering the sources from their linear convolutive 
mixtures remains a challenging problem. Many solutions have been addressed in the 
frequency-domain, particularly for the separation of non-stationary audio signals. In the BSS 
of stationary signals, two problems occur in the time-domain. It has been proved [1] that 
convolutive mixtures are separable, that is, the independence of the outputs insures the 
separation of the sources, up to a few indeterminacies. However, the meaning of the 
independence is not the same in the convolutive and instantaneous contexts. Blind source 
separation methods depend on the nature of the criterion to measure the statistical mutual 
independence between the output signals.  
In this paper, our approach is based on the maximization of a criterion using the fourth-order 
cumulant matrices between the estimated outputs and the projections of these outputs on each 
sensor.  Several solutions have been addressed in the case of instantaneous mixtures [2,3] 
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based on fourth-order cumulants and using a reference signal. Other global approaches are 
based on the maximization of a criterion called a contrast function [4,5]. In this case, several 
approaches have been generalized through the use of reference signals. The first works have 
been restricted to the case of instantaneous source mixtures [6] while results concerning 
convolutive mixtures have been presented more recently [7]. The second problem comes from 
the inherent indeterminacy of the definition of the source in the BSS model. Indeed, any linear 
transform of a source can also be considered as a source and there is an infinity of separations 
that can extract sources. Some constraints can be added either on the source signals or the 
separating system (Minimal Distortion Principle [8]). In [8], one proposition is to choose the 
separator which minimizes the quadratic error between sensors and outputs, also known as 
Wiener filtering. Our approach is based on the calculation of fourth-order cumulant matrices 
and using the contributions of all sources on each sensor in order to diagonalize these matrices 
jointly. In [9,10], we used the mutual information of outputs as an independence criterion and 
we proved that testing the independence between the contributions of all sources on the same 
sensor at same time index n also leads to separability, we simplified the independence 
criterion using Wiener filtering.  In this paper, the source separation matrix is updated 
iteratively by the projection of the outputs on the sensors calculated by Wiener filtering.  
In section 2, we introduce the model. In section 3, we describe our algorithm with added 
contributions of all sources on each sensor. An illustration of the separating algorithm and 
simulation results is also developed. A conclusion is given in section 4. 

2. MODELING THE PROBLEM 

Let us consider the BSS model of a convolutive mixture with N sources and N sensors 
illustrated in Figure 1. We assume that sources si(n) (i = 1,…,N) are mutually independent. 
Each sensor xj(n) (i = 1,…,N) receives a linear convolution from each source si(n) at discrete 
time n. The goal is to recover the source processes si(n), i∈{1,…,N} using only the 
observation x(n). The relationship between the observations and the sources can be expressed 
through the following linear model:  
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Equation (1) can be also written in Z-transform as: 
 

          [ ] )()()( nszAnx =                                    (2) 
 

where aij represents the impulse response from source i to sensor j. ‘*’ denotes the linear 
convolution operator. The aim of BSS is to find filters with impulse responses bij between 
sensor i and output j, such that the output vector y(n) estimates the sources, up to a linear 
filter: 
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It is useful to define the global filter by the following impulse response:  
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We have then:  
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Figure 1. Mixing and demixing system 

 
If yj(n) is any linear filtering of one source, then the contribution of this source on the first 
sensor is calculated by a (possibly non causal) Wiener filter W1i(z) such that the quadratic 
error between x1(n) and yi(n) :  
 

                 2

1 1( ( ) * ( ) )i iE x n w y n−  is minimized                    (7) 

 
Therefore, the purpose of using Wiener filtering is to minimize the mean-square error 
between their output and a required output (see Figure 2). In [9,10] we proved that using the 
projection of the outputs on the same sensor also leads to separability, without making an 
independence test of delayed outputs (for more details about Wiener filter, see [9,10]). The 
contribution of the source i on the mth sensor is thus given by : 
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Figure 2. Separation Model 

3. CONTRAST FUNCTIONS 

3.1 Separability 

In specific cases, testing the independence between yi(n) and yj(n) is sufficient [6] to ensure 
the separation. For example, for i.i.d. normalized sources, the sum of fourth-order cumulants 
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of the outputs is a contrast function [7] under a condition on separating filters [6]. For linear 
filtering of i.i.d. signals, the same result is obtained after a first step of whitening of the data. 
However, in a general case, delays must be introduced in the contrast function and the 
separability of convolutive mixtures is obtained only when the components of the output 
vector y(n) are independent in the sense of stochastic variables : yi(n) and yj(n-m) have to be 
independent for all discrete time delays m.  For example, a solution is to minimize the 
criterion J : 
 

                                                     ( )( ), ( )i j
i j m

J I y n y n m
≠

= −∑ ∑                                                    (9) 

 
where I represents the mutual information (10). I is nonnegative and equal to zero if and only 
if the components are statistically independent. 
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The delays m can be taken in an a priori set [-K, .., K], which depends on the degree of the 
filters corresponding to the whole mixing-separating system. The criterion (9) is 
computationally expensive. In [3], a gradient-based algorithm minimizes (9): at each time 
iteration, a random value of delay m is chosen and I(yi(n), yj(n-m)) is used as the current 
separation criterion. 
In previous papers [9,10], we studied the separability of the contributions of the sources i and 
j,  projected on the sensor m , zmi(n) and zmj(n) (4) versus yi(n) and yj(n). We showed that it 
was simpler and that no time delay (n-m) was needed. Testing I(yi(n), yj(n))=0 and I(zmi(n), 
zmj(n))=0, ensures the separability, as well as the minimization of the mutual information of 
the outputs I(zmi(n), zmj(n))=0. The criterion is much more easier to test than the mutual 
information of delayed outputs as it was verified in an iterative way. Moreover the outputs are 
directly the contribution of the sources on the processed sensor.  
 

3.2 Separation criteria based on the fourth-order cumulants  

In [10], we studied the separability of zji(n) and we used the mutual information such as an 
independence criterion but the proof of separability can be also exploited with another 
independence test. In [11], we used a fourth-order cumulant based method to compute the 
separation matrix B(z). We propose here to compare two other criteria based on the 
cancellation of fourth-order cross-cumulants between the Wiener outputs zji(n):  
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As in [3,9], the criteria C1 and C2 are minimised in an iterative way. The convolutive 
separative filters B(z) are updated with the error term C1 or C2. A Wiener step is added at the 
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output of the separating phase. The criteria are minimized iteratively, with the following 
algorithm :  
 
Initialization : y(n)= x(n) 
Repeat until convergence :  

- Estimate the criteria C1 or C2  between the contributions : zj(n)=Wi(z) yj(n) 
- Update : B(z)  �    B(z)- µ C1 
- Compute  the outputs of the separating filters yj(n)=B(z) x(n) 
- Compute the Wiener filters Wi(z), and the new contributions : zj(n)=Wi(z) yj(n) 
- Replace : y(n) �  [z11(n), z12(n))] 

 
The convergence and the behaviour of the algorithm is investigated in the appendix. The 
performances are shown in figures 1 and 2 with simulation results. Each source (of 1500 
samples) is constituted of the sum of a uniform random signal and a sinusoid. They are mixed 
with filters :  
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The quadratic errors between z1(n) and the exact contribution are plotted in Figure 3 for each 
iteration. They are averaged on 50 realizations of the sources. For a common value of the 
parameter µ=0.03, the black and blue curves respectively represent the MSE of criteria C1 
and C2. The red curve represents the MSE of criterion C2 where x(n) are the whitening 
sensors. In this case, C2 is also a contrast function. This result has been obtained in [12] using 
the approach of reference signals. It shows good results for the convergence and the residual 
quadratic error. However, C1 is the more efficient algorithm in term of convergence speed. It 
can be explained by the fact that C1 aims at the minimization of more cross-cumulants that 
C2. For example, in a 2 source, 2 sensor scheme, C1 must cancel 6 cross-cumulants whereas 
C2 minimizes only 2 cross-cumulants. 
 
 

 

 

 

 
 
 
 
 
 

Figure 3. MSE of the criteria C1 and C2 
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In Figure 3, the parameter µ was optimal for C2 (with whitened sensors - red curve). The final 
MSE in that case is equal to 5 10-7 (versus 8 10-4 for C2 and 2 10-4 for C1). In Figure 4, the 
parameter was optimal for each criterion in term of MSE and the speed convergence 
behaviour is compared. For an equal MSE of 3 10-7, we see that C1 (black curve µ=0.01) has 
still the better convergence speed versus C2.  
 
 
 

 

 

 

 

 

Figure 4. MSE of the criteria C1 and C2 

4. CONCLUSIONS 

In this paper, we have addressed the source separation problem in the case of convolutive 
mixture, expressed in the time-domain. We have developed an algorithm based on the fourth-
order statistics and Wiener filtering. The method is based on the minimization of two criteria 
based on the cancellation of fourth-order cross cumulants between the contributions of all the 
estimated sources on each sensor, calculated by Wiener filtering. The matrix separation is 
updated iteratively by the contributions of the outputs recovered by Wiener filtering. We 
show that the implementation of such an approach allows appreciable improvement of the 
quality of the source separation. Simulation examples are given to demonstrate the 
performance of the proposed method.  The test is easier and shows good results on simulation. 

5. APPENDIX 

Let be a 2 sources 2 sensors scheme. For sake of simplicity, we call here sources the two 
contributions on the first sensor. So, x1(n) is equal to : 1 1 2( ) ( ) ( )x n s n s n= + . zmi are the 
contributions of the sources on the first sensor calculated by Wiener filtering, they are given 
by :            
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The DFT of filters wmi(k) are computed at frequency bin f as a function of the cross-spectra 
γYjX1(f) of x1(n) and yj(n), and γYj(f) the spectra of yj(n) : 
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The two first contributions are given in function of the global filter G(z): 
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The algorithm has two parts : a separating step followed by a Wiener filtering. The two parts 
are iteratively updated and exploits the second order statistics (decorrelation between1( )s n  and 

2( )s n ) and fourth-order statistics (independence between1( )s n  and 2( )s n ). At the convergence 
of the algorithm : the two parts converge. Concerning the Wiener step, we have : 
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We can eliminate the trivial solutions (z1j(n)=0 or x1(n)). z1j(n) are not zero, knowing that the 
Wiener filter maximizes the correlation between the outputs of the separating step and the 
sensors. z1j(n) are not equal to the sensors, knowing that :  
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It remains that: 11 1( ) ( )z n s n=  and 12 2( ) ( )z n s n= . In the same way, if 2 11 1 12 2( ) ( ( )) ( ( ))x n F s n F s n= + , 

we obtain that 21 11 1( ) ( ( ))z n F s n= and 22 12 2( ) ( ( ))z n F s n= .  

 
As only second-order is used, it means that we could recover any orthogonal signals 1' ( )s n  

and 2' ( )s n  such that their sum is equal to the first sensor 1 1 2( ) ' ( ) ' ( )x n s n s n= +  as the 
decomposition is not unique. 
 
Suppose that we recover : 11 1 1 2( ) ' ( ) ( ) ( )z n s n s n s nα β= = +  and 12 2 1 2( ) ' ( ) ( ) ( )z n s n s n s nγ δ= = +  with 

parameters (α,β,γ,δ) such that 1' ( )s n  and 2' ( )s n  are orthogonal and 1 1 2( ) ' ( ) ' ( )x n s n s n= + .  
The problem is then equivalent to an instantaneous mixture and the criterion 
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