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Abstract 
 

In computational acoustics, fluid-acoustic coupling methods for the computation of 
sound have been widely used by researchers for the last five decades. In the first part of the 
coupling procedure, the fully unsteady incompressible or compressible flow equations for the 
near-field of the unsteady flow are solved by using a Computational Fluid Dynamics (CFD) 
technique, i.e., Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) or 
unsteady Reynolds averaged Navier-Stokes equations (RANS); results of these simulations 
are then used to calculate sound sources using the acoustic analogy or by solving a set of 
acoustic perturbation equations (APE) leading to the solution of the acoustic field. It is 
possible to use a 2-D reduced problem to provide preliminary understanding of many acoustic 
problems. Unfortunately 2-D CFD simulations using a fine-mesh-small-time-step-LES-alike 
numerical method cannot be considered as LES which applies to 3-D simulations only.  
Therefore it is necessary to understand the similarities and the effect between filters applied to 
unsteady compressible Navier-Stokes equations and the combined effect of high-order 
schemes and mesh sizes. The aim of this study is to provide suitable LES-alike methods for 2-
D simulations.  An efficient software implementation of high order schemes is also proposed. 
Numerical examples are provided to illustrate these empirical similarities. 

1. INTRODUCTION 

From a computational viewpoint, there are two solution strategies, i.e., the direct sound 
computation and coupling computation of sound. In the former prediction strategy, the 
unsteady flow and the sound generated by the unsteady flow can be computed together using 
the unsteady compressible Navier-Stokes equation, i.e., the unsteady flow and its sound are 
regarded as correlated parts of the same flow field. There are mainly three different 
techniques which are normally used by researchers in Computational Aeroacoustics (CAA). 
By placing them in the decreasing order in terms of computational accuracy as well as 
computational cost, they are direct numerical simulation (DNS), Large Eddy Simulation 
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(LES) and Reynolds-averaged-Navier-Stokes equations (RANS). However, it can be easily 
shown that it will be impossible to apply DNS for practical flow and aeroacoustic problems 
(high Reynolds number) in the foreseeable future; direct sound computation based on LES for 
application to engineering flows still remains expensive due to accurate computation in time 
and space, fine mesh (or high-order schemes) and small time-steps are required in calculation 
of the motion of the large scales; direct simulations of acoustic field based on RANS cannot 
usually obtain reasonable acoustic results due to their excessive turbulent dissipation [1], [2]. 
Under the circumstances, researchers in computational aeroacoustics field have to seek for 
more practical solution strategy. The development of coupling methods for aeroacoustic 
problems has been an active area of research in CAA.  

In CAA, computational domain (domain of interest) is often divided into two parts; one 
is the ‘near field’ where main acoustic sources (sound generation) are located, where detailed 
flow structures can be resolved may be simulated by a Computational Fluid Dynamics (CFD) 
technique (DNS, LES or RANS); the other part is the ‘far field’ in which concerns are the 
propagation/radiation of the resulting acoustic waves, which is then calculated via an acoustic 
analogy or by solving a set of acoustic perturbation equations. A coupling method was 
developed to couple CFD calculations and the acoustic propagation inside the car 
compartment using Helmholtz equation [7].  The CFD calculations were based on a fine-
mesh-small-time-step-LES-alike numerical method in two-dimension.  Such simulation 
cannot be considered as an LES simulation.  The aim of this study is to understand the 
similarities and the effect between filters applied to unsteady compressible Navier-Stokes 
equations and the combined effect of high-order schemes and mesh sizes.  It is envisaged to 
supplement suitable LES-alike methods for 2-D simulations.  In conjunction to LES-alike 
methods an efficient software implementation of high order  schemes is proposed. 

2. AN AEROACOUSTIC NOISE ANALYSIS METHOD 

The rapid advance of computational power in recent years allows LES being used on many 
applications with reasonably high Reynolds number. The main advantage of LES over those 
computationally less expensive methods such as Reynolds-averaged Navier-Stokes equations 
(RANS) is the increased level of detail it can deliver. While RANS methods provide 
“averaged” results and turbulence models over-damping the high frequency fluctuations, LES 
is able to predict instantaneous flow characteristics and resolve turbulent flow structures of 
large scales (i.e., the energy-containing eddies), which are know to contribute most to the 
sound generation in many problems.  

The difficulty in achieving predictive simulations is perhaps best illustrated by the wide 
range of approaches that have been developed and are still being used by the turbulence 
modelling community; Implicit Large Eddy Simulation (ILES) is one of them. ILES is a 
relatively new approach that combines generality and computational efficiency with 
documented success in many areas of complex fluid flow. Instead of using a subgrid-scale 
model for a classic LES to model the motion of those non-energy-contained eddies, ILES 
uses a higher-order discretisation method with a limiter. The limiter is originally meant to 
avoid numerical oscillations in the solution, but it also works as a subgrid model for small 
eddies [3]. The concept of using a higher-order discretisation method as a subgrid scale model 
in ILES, with a fine mesh, small time-steps numerical approach to resolve the unsteady flow 
field is implemented in this paper. 

A hypothetical car configuration with an open sunroof with part of the compartment 
forming the resulting cavity is used as an example to illustrate the noise analysis method. The 
car is travelling at a cruising speed with induced flow fluctuation due to the open sunroof. The 
pressure perturbation along the sunroof is computed by solving the two dimensional unsteady 
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compressible Navier-Stokes equations using a typical commercial Finite Volume CFD 
package, PHOENICS [4], and the pressure fluctuation due to the sunroof is extracted and 
analysed. For the second part of the coupling procedure, the acoustic response inside the car 
compartment is calculated by solving the Helmholtz equation.  

2.1 Resolve Unsteady Navier-Stokes Equations 

A hypothetical car with an open sunroof as depicted in Figure 6. In order to excite the flow to 
get stronger pressure fluctuation response on top of the sunroof, an artificial sinusoidal 
vertical-velocity disturbance is used to represent a single vortex generated by vehicle 
travelling at upstream of this car.  Numerical schemes applied to resolve the unsteady Navier-
Stokes equations are high-order, very fine spatial mesh, and small time-steps resemble many 
features of a DNS simulation.  Previous experience of a similar problem by solving RANS 
can be found in [5].  
 

 
Figure 1. A hypothetical car with open sunroof. 
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To satisfy both the mass and momentum conservation laws, the velocity and pressure 

field are solved iteratively by using the SIMPLE pressure-correction algorithm proposed by 
Patankar and Spalding [6]. QUICK scheme is used on all variables as the numerical 
differencing scheme.  

In a snapshot of vertical velocity disturbance at st 5.0=  (Figure 2), it shows the 
amplitude of aerodynamic disturbances is gradually becoming weaker and weaker. This is due 
to the numerical diffusion from the differencing scheme. However, a clear vortex shearing on 
top the sunroof can still be observed. 
 

 
Figure 2. A snap shot of vertical velocity component disturbance at st 5.0= ; top: zoom-in image 
around the sunroof opening. 

2.2 Analysis of Acoustic Response 

Frequency components of the pressure fluctuations are then examined by producing an 
acoustic power spectrum of the time history at all seven points on the sunroof via sampling a 
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512-point Fast Fourier Transform (FFT), which returns the dominant frequency at all 
observation points on the sunroof, occurs roughly at 13Hz. 

The validity of the results of the dominant frequency is checked against a Helmholtz 
resonator with similar shaped and sized cavity. The resonant frequency for a typical 
Helmholtz resonator may be approximately calculated by the formula, 

)/()2/( VlAcf effπ= , where rllll coreff η+=+=  denotes the effective length of the air at 

the opening, l  is the geometric neck length (i.e., 0.05m, in Figure 1).  is the end correction 
on the neck length, which can be expressed by a product of 

corl
r , the radius of the neck, and η , 

an empirical coefficient which significantly depends on geometrical configuration and sizes. 
A  is cross sectional area of the neck, V  represents the volume of the inside cavity. An 
approximate value of the dominant resonant frequency with 9.16=η  is around 10.5Hz. This 
is not a strict comparison due to the coefficient unavailable currently for the cavity of the car 
compartment considered. However this crude comparison shows that the dominant frequency 
value obtained through the unsteady computation is a physically acceptable approximation. 

2.3 Sound Propagation inside the Car Compartment 

To implement the acoustic propagation by Helmholtz equation in this case, it is assumed that 
the flow inside the car compartment is negligible. For the present study the analysis of sound 
distribution for the dominant frequency of 13Hz due to an incoming disturbance of 50 Hz is 
examined.  The power spectrum density along the sunroof is used as Dirichlet boundary 
conditions for the Helmholtz equation, which calculates the acoustic pressure distribution 
inside the car compartment. 

It is shown that the highest acoustic pressure is experienced at x at 7.1m (end of sunroof 
opening). On the other hand, along the horizontal line just below the sunroof, the acoustic 
pressure shows an oscillatory behaviour resulting from the pressure fluctuation above the 
sunroof.  This oscillatory behaviour gradually becomes weaken as one moves deeper into the 
car compartment. This shows that the solution obtained is reliable. The acoustic pressure 
tends to be more stable at the bottom of the car compartment. 

More details of this method for aeroacoustic analysis can be found in the paper 
published in ICSV13 proceedings. 

3. COMPARISON BETWEEN HIGH ORDER SCHEMES AND FILTERING 
EFFECTS 

As presented in the test case in last section, the buffeting noise along the sunroof is computed 
by solving an Implicit-LES-like method with high-order-scheme-filter-effect, instead of using 
the classical LES supplemented with a sub-grid scale turbulent model, but in two-dimension. 
Fine time steps and spatial mesh are used. Spatial discretisation in higher order provides 
better numerical approximation than using 2nd order CFD schemes. The method described in 
previous section is in essence a LES method, however, not strictly in its sense, since LES 
applies to three dimensional problems. 

In order to understand high order schemes and the equivalent/similar filter effect, this 
paper uses a convection and diffusion problem as a testbed. The results are then compared 
with two types of commonly used filters, Box filter and Gaussian filter. The aim of this study 
is to establish the relationship between high order schemes and filters. It is hoped that such 
relationships may be extended to Navier-Stokes equations.  

3.1 Higher Order Schemes 
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An example of a linear elliptic two point boundary value convection and diffusion problem in 
1-D is given as 

 
( ) ( ) ( ) ( ) ( ) ( ) [ ],1,0,,, ∈=+′+′′− xkxfxxbxxax kαφφφ     (1) 

 
where ( )xφ  is the resolved variable, ( )xa  and ( )xb  are two given functions of x , and kα  is a 
series of random numbers. The problem is subject to boundary conditions 
( ) ( ) 1--3.568E10 == φφ .  This problem is supplemented with the analytic solution (see Figure 

3) is 
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where A  is the amplitude,  normally takes half of the number of grid points. N
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Figure 3. Analytic solution for ( ) [ ]1,0, ∈xxφ . 
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To obtain different high order finite difference discretisation for eqn (1) is a tedious 

task affecting the software development. A systematic algorithm has been developed for easy 
implementation of high order schemes based on the concept of the defect correction method. 
The given differential equation (1) can be rewritten as 
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where h is the step size, iτ  is the high order truncation term from the Taylor’s Series 
Expansion. Hence for 2nd, 4th and 6th order accuracy, the corresponding iτ s are expressed as 
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respectively. 

By introducing the defect correction method, it eases the complexity and obtains 
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flexibility of the calculation in order to help us to create a systematic way to calculate a given 
problem to different levels of high order accuracies. The concept is by writing Equation (1) in 
the form 

 
,*

ii fL =φ        (7) 
 

where  is the resolved solution, L is the matrix structure from the given equation. Taylor’s 
Series Expansion is used to reconstruct L into a unified matrix structure Lh with the high order 
truncation 

*
iφ

iτ  term, i.e.,  
 

.*
iiih fL =+τφ        (8) 

 
Since iτ  is considered to be fairly small, we can calculate an approximated solution iφ  by 
neglecting iτ  term, i.e., as we are solve 

 
.iih fL =φ        (9) 

 
Subtract Equation (9) from (8) leads to 

 
iihL τϕ −=        (10) 

 
where iϕ  is referred as the corrector, .  Such an algorithm avoids reformulating 
the finite difference matrix structure L every time a different order of accuracy method is 
used. The same unified matrix structure Lh to solve for both the approximated solution 

iii φφϕ −= *

iφ  and 

the correction iϕ  which is then used to obtain the final solution . Only the 
truncation term 

iii ϕφφ +=*

iτ  needs to be replaced in different computation. 
The result for the calculation based on 2nd order and 4th order schemes are shown in 

Table 1. As expected, higher order (4th order in this case) calculation improves the accuracy 
of the numerical calculation.  Note that the algorithm resembles similar procedures as how the 
filtering system employed in Large Eddie Simulations works. If we assume iφ  being the large 
scale component which is resolved by solving unsteady Navier-Stokes equations, iϕ  is the 
small scale (filtered-out) component which is modelled by Subgrid Scale model. It certainly 
exhibits certain relationships between the higher order schemes and filtering systems.  

3.2 Filter Effects 

In order to compare the type of filters which have equivalent/similar filtering effect as those 
of high order schemes, two types of common used filters in image processing, Box and 
Gaussian filters, have been applied on analytic solution to compare the effects. 

The Box filter, also known as the mean filter, is a simple, intuitive and easy to 
implement method of reducing the amount of intensity variation between one pixel of a 
picture and the next to smooth the image. The idea of box filtering is simply to replace each 
pixel value in an image with the mean (“average”) value of its neighbours, including itself. 
This has the effect of eliminating pixel values which are unrepresentative of their 
surroundings. Box filtering is usually thought of as a convolution filter, which is based 
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around a kernel that represents the shape and size of the neighbourhood to be sampled when 
calculating the mean.  

The Gaussian filtering is a different type of convolution filter, which is used in image 
processing to “blur” images and remove detail and noise, and in fluid dynamic it is used to 
damp-out fluctuations (small scales) in CFD simulation. In this sense it is similar to the box 
filter, but it uses a different kernel that represents the shape of a Gaussian (“bell-shaped”) 
hump. 

The Gaussian distribution in one dimensional has the form 
 

( ) ,
2
1 2

2

2σ

σπ

x

exG
−

=       (11) 

 
where σ  is the standard deviation of the distribution. 

After applying each filter onto the analytic solution, results are shown in Table 2. 
 

Table 1. Numerical approximation vs. Analytic solution. 
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Table 2. Filtering solution vs. Analytic solution. 

Box Filtering solution with filter-size 
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Comparing the two results in Table 2, it is found that the result obtained by Gaussian 

filter has much less error than the one obtained by Box filter. The Gaussian filter outputs a 
“weighted average” of each grid point’s neighbourhood, with the average weighted more 
towards the value of the central grid points. This is in contrast to the Box filter which uses 
uniformly weighted average. Hence Gaussian filter provides gentler smoothing and preserves 
fluctuations and peaks up to certain frequency better than a similarly sized Box filter.  

Based on these investigations, there seems to be a certain relationship between a given 
high order scheme with a mesh size and the effect of a filter. As shown in previous 
comparison, it is not difficult to notice that both 4th order accuracy numerical approximation 
and Gaussian filtered solution show good agreement with the analytic solution roughly on the 
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same level. Same observation applies to 2nd order accuracy numerical approximation and Box 
filtered solution, however, they show agreement with the analytic solution respect to a larger 
scale. From the comparison of their total errors from analytic solution, it is very interesting to 
find out that there are similarities, observed while step-sizes applied are twice as large as 
filter-sizes (i.e., xdx Δ= 2 ), between 2nd order numerical solution and Box filtered solution, as 
well as between 4th order numerical solution and Gaussian filtered solution. Further 
investigation and more test cases are needed to explore the relationship between higher order 
numerical schemes and filtering effects. 

4. CONCLUSION 

Large Eddy Simulation still remains expensive for CAA calculations. To develop an 
economical method, an acoustic analysis method inside a car compartment is reviewed. The 
main aim is to point out that the numerical method used is a fine-mesh-small-time-step-LES-
alike numerical method, which uses high order schemes rather than a subgrid scale model to 
resolve the small scale motions. 

A one dimensional numerical example has been used to demonstrate the similarity 
between higher order schemes and filtering effects of CFD calculation. In order to improve 
computer implementation efficiency, a systematic algorithm has been developed based on the 
concept of the defect correction method of solving a given problem up to different levels of 
higher order accuracy. 2nd and 4th order schemes are compared with two different types of 
filtering effects: Box and Gaussian filters; and similarity between them has been discussed. 
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