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Abstract

Nowadays, the sound quality has an ever-growing influence on the overall impression of a
product. To predict the sound radiation of structures, both a structural and an acoustic problem
have to be solved. In this work, the structural part is modelled by the finite element (FE) method,
whereas the exterior acoustic problem is efficiently simulated with the boundary element (BE)
method . To overcome the well known bottleneck of fully populated boundary element matri-
ces, the fast multilevel multipole method is applied. In case of thin structures and dense fluids,
a strong coupling between the two problems is essential, since the effect of the acoustic pres-
sure onto the surface of the structure is not negligible. Two different methods are investigated:
First, the structural displacements are eliminated yielding a Schur complement formulation.
Secondly, the problem is formulated with a Lagrangian multiplier and an Uzawa-type algo-
rithm with nested inner-outer iterations is applied. In both cases, iterative solvers with different
preconditioners are used.

1. INTRODUCTION

In the structural-acoustic simulations presented here, a strong coupling between fluid and struc-
ture is taken into account. For the structural part, the FE method turned out to be well suited for
engineering applications. In most cases, a FE/FE coupling scheme is applied if interior acoustic
problems are investigated [1]. In contrast, a FE/BE coupling approach is superior for exterior
problems, since the Sommerfeld radiation condition is automatically fulfilled [3]. An optimal
efficiency is obtained by accelerating the BE part with the fast multilevel multipole method.
Two different FE/fast BE coupling schemes are investigated in this paper. First, the theory of
the different approaches is discussed. Then, the coupling algorithms are considered. Finally,
two numerical examples are investigated.
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2. FUNDAMENTALS

The structural vibrations are simulated by the finite element method, whereas the exterior acous-
tic problem is efficiently modelled by the boundary element method. Below, the characteris-
tic equations for the structure and the fluid are derived in the frequency domain. Throughout
this paper the time-harmonic behavior e−i ω t will by applied, where i is the imaginary number,
ω = 2 π f denotes the angular frequency and f is the excitation frequency. The normal vector
n(x) on the coupling interface Γint is defined to point into the fluid.

2.1. Structural Fundamentals

The structural part is assumed to be linear elastic. A weak form of the equation of motion is
obtained by applying d’Alembert’s principle [1]

δuT
∫

Ω

BTC B dΩ

︸ ︷︷ ︸

Ks

u = −δuT ρ

∫

Ω

NT
uNu dΩ

︸ ︷︷ ︸

Ms

d2

dt2
u + δuT

∫

Γp

−N∗T
u n Np dΓ

︸ ︷︷ ︸

−CFE

p + δuTfs, (1)

where B is the strain-displacement matrix and C is the elasticity matrix with the strain-stress
relationship. The nodal displacement, pressure, and force vector are given by u, p and fs and
Nu and Np are the matrices with the shape functions for the displacement and pressure, re-
spectively. In case of N∗

u rotational degrees of freedom are neglected. The mass and stiffness
matrices are denoted by Ms and Ks, respectively. The coupling matrix CFE takes into account
the effect of an acoustic pressure onto the structure. Equation (1) must be fulfilled for an arbi-
trary virtual displacement δuT. Transformation to the frequency domain and introduction of a
Rayleigh damping yields the system of equations

(
−ω2Ms − iωDs + Ks

)

︸ ︷︷ ︸

KFE

u + CFE p = fs. (2)

The damping matrix is assumed to be a linear combination of the mass and stiffness matrix
Ds = α Ms + β Ks. To obtain a flexible simulation tool, Ms and Ks are directly imported from
the commercial FE package ANSYS.

2.2. Fluid Fundamentals

In the following, the exterior acoustic problem is considered. Starting point of the fluid formu-
lation is the time-harmonic Helmholtz equation

∇2p(x) + κ2 p(x) = 0, (3)

which is valid for the pressure p at an arbitrary point x within the exterior acoustic domain Ωe.
The circular wavenumber is denoted by κ = ω

c
, where c is the sound velocity of the acoustic

fluid. A weak form of the Helmholtz equation can be obtained by weighing with the fundamental
solution P ∗ = eiκ r

4 π r
, where r denotes the distance between source and field point. Applying

Green’s second theorem yields the representation formula which is valid for a field point within
the acoustic domain. The boundary integral equation can be obtained by shifting the field point
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onto the smooth boundary

1

2
p(x) = −

∫

Γ

P ∗(x, y) q(y) dsy

︸ ︷︷ ︸

(V q)(x)

+

∫

Γ

∂P ∗(x, y)

∂ny

p(y) dsy

︸ ︷︷ ︸

(Kp)(x)

, x ∈ Γ, (4)

with the acoustic flux q(x) = ∂p(x)
∂n

. The single layer potential is denoted by V and the double
layer potential by K, respectively. Analogously, the hypersingular boundary integral equation
is derived by an additional derivative with respect to the normal

1

2
q(x) = −

∫

Γ

∂P ∗(x, y)

∂nx

q(y) dsy

︸ ︷︷ ︸

(K′q)(x)

+

∫

Γ

∂2P ∗(x, y)

∂nx∂ny

p(y) dsy

︸ ︷︷ ︸

−(Dp)(x)

, x ∈ Γ, (5)

where K ′ denotes the adjoint double layer potential and D is the hypersingular operator.
A Galerkin formulation can be obtained by testing these equations on the coupling interface Γint.
Introducing shape functions for p(x) and q(x) results in an algebraic system of equations.
Further details on the BE formulation are given in section 3 and 4.
A serious drawback of classical BE methods is, that setting up the fully populated BE matri-
ces is of order O(N 2), where N denotes the number of degrees of freedom. To overcome this
bottleneck, the fast multilevel multipole method is applied.

2.2.1. Fast Multilevel Multipole Boundary Element Method

In order to use the multipole method, all elements are grouped by means of clusters. In contrast
to classical BE formulations, which compute the effect of every source point onto every field
point, the sources of every cluster are first summed up, transformed to the other clusters and
finally distributed to the field points. Typically, one has to evaluate potentials of the type

Φ(xb) =
A∑

a=1

eiκ|xb−ya|

|xb − ya|
qa, (6)

where qa denotes the source strength and |xb − ya| is the distance between the source and field
point. This distance can be split up into three portions: First, the distance |za − ya| between
the source point and the center of the source cluster. Secondly, D which only depends on the
distance between the centers of the two clusters and finally |xb − zb|, that is local to the field
point cluster. Using these distances, the potential can be rewritten by means of the diagonal
multipole expansion [2]

Φ(xb) =
iκ
4π

∫

S2

eiκ(xb−zb)·sML(s,D)
A∑

a=1

eiκ(za−ya)·sqa

︸ ︷︷ ︸

F (s)

ds. (7)
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The sum in (7) is called ”farfield signature“ F (s). The translation operators ML(s,D) are de-
fined by

ML(s,D) =
L∑

`=0

(2` + 1)i`h(1)
` (κ|D|)P`(s · D̂) (8)

with the Hankel functions h` and the Legendre polynoms P`. Since the multipole expansion is
only valid for well separated source and fieldpoints, one has to split up the clusters into a near-
and farfield. The nearfield is represented by a sparse matrix. It has to be evaluated by classi-
cal BEM. To obtain an optimal efficiency, a multilevel cluster tree is used. This fast multilevel
multipole (FMM) algorithm has a quasi linear complexity of order O(N log2 N). For a detailed
description the reader is referred to [4].

3. DIRECT COUPLING WITH BURTON-MILLER FORMULATION

The first coupling procedure uses a Burton-Miller formulation for the BE part. Motivated by the
fact, that neither the boundary (4) nor the hypersingular boundary integral equation (5) has an
unique solution for an exterior acoustic problem, a linear combination of both is applied, which
is known as the Burton-Miller approach

(

−
1

2
I + K

)

p(x) +
i
κ

(Dp)(x) = (V q)(x) +
i
κ

(

−
1

2
I − K ′

)

q(x). (9)

Testing (9) with linear test functions yields a Galerkin formulation. The flux on the coupling
interface is now expressed by the structural displacements in normal direction

q(x) = ρf ω
2u(x) · n(x), (10)

where ρf is the density of the fluid. Introducing a triangulation of the boundary and interpolating
the pressure and displacement with the shape functions ϕp and ϕu leads to the algebraic system
of equations

(

−
1

2
I + K +

i
κ

D
)

︸ ︷︷ ︸

KBE

p−ρf ω
2

(

V −
i

2κ
I′ −

i
κ

K′

)

︸ ︷︷ ︸

CBE

u = 0. (11)

By combining (2) and (11), the coupled system including the FE part is formally written as
(

KFE CFE

CBE KBE

)

︸ ︷︷ ︸

K

(

u
p

)

=

(

fs

0

)

. (12)

Since a direct solver would cause an expense of order O(N 3) in case of fully populated matri-
ces, an iterative GMRES solver is used for the coupled system (12).
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3.1. Iterative GMRES Solver with Preconditioning

By introducing the Schur complement S = KBE−CBEK−1
FE CFE, the exact solution of the coupled

system can be written as

p = −S−1CBEK−1
FE fs and u = K−1

FE (fs − CFEp). (13)

Two different solvers are investigated:

1. The fully coupled system (12) is solved by a single GMRES solver (“full”-solver). Since
p and u are of totally different magnitudes when using SI units, a nondimensionaliza-
tion is performed. Additionally, a block diagonal preconditioner is constructed with the
approximate inverses of KFE and KBE. Incomplete LU (ILU) and LU factorizations are
used for this purpose.

2. The reduced system on p (13 left) is solved by a single GMRES solver (“reduced”-solver).
In this case, a nondimensionalization is implicitly included in the formulation and does
not have to be performed manually. The exact inverse K−1

FE in the Schur complement is
needed at every iteration step. It can efficiently be computed by a direct solver, using a
factorization, e.g. a LU-solver. This factorization is then applied at every iteration step. A
preconditioner can be constructed by approximating the inverse of the Schur complement
by K−1

BE . An ILU and an approximate inverse preconditioner (AIP) are compared. The
structural displacements u are computed in a postprocessing step with (13 right).

4. COUPLING FORMULATION WITH LAGRANGE MULTIPLIERS

In this section an alternative coupling formulation is discussed. The pressure on the coupling
interface Γint is chosen as Lagrange multiplier, i.e. λ = pint [3]. In contrast to the formula-
tion before, the boundary integral equation (4) is tested with constant test functions νq and the
additional term

∫

Γint
νq
(
pint − λ

)
dΓx is introduced to enforce the equilibrium condition. The

hypersingular boundary integral equation (5) is tested with linear test functions νp on the same
boundary. The continuity condition between structural displacement and flux is formulated in
the weak sense by ∫

Γint

νλ
(
−ρfω

2un + qint) dΓx = 0. (14)

The pressure pint is interpolated by linear shape functions and constant shape functions are used
for the flux q. Taking into account the FE part (2) leads to the algebraic system of equations









ρf ω
2KFE CFE

−Ṽ 1
2
Ĩ + K̃ −C̃BE

−1
2
Ĩ

T
− K̃

T
−D̃

−CT
FE C̃

T
BE
















u
qint

pint

λ








=








ρf ω
2fs

0

0

0








. (15)

In contrast to the previous formulation, the coupling matrix C̃BE, which arises from the conti-
nuity condition (14), is sparse now.
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Figure 1. Submarine-like structure.
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Figure 2. Sphere: FE/BE- vs. analytical solution.

4.1. Uzawa Algorithm

The use of an iterative solver on the system (15) shows poor convergence. Therefore, an Uzawa
algorithm is used to introduce a reduced system which is solved for the Lagrange multiplier λ

(“Lagrange-solver”)
[

CT
FE

(
ρfω

2KFE
)−1 CFE + C̃

T
BEK̃

−1

BEC̃BE

]

λ = CT
FE

(
ρfω

2KFE
)−1

ρfω
2 fs. (16)

The inner inverse (ρfω
2KFE)

−1 of (16) is computed by a direct LU solver. A GMRES is used to
evaluate K̃

−1

BE , which stands for the BE part. The matrix-vector product can efficiently be com-
puted by the FMM algorithm. Two different preconditioners are investigated to approximate
K̃

−1

BE : A diagonal scaling and an incomplete LU factorization (ILU). A GMRES without pre-
conditioning is applied for the outer iterations. The structural displacements can finally be com-
puted in a postprocessing step.

5. NUMERICAL RESULTS

The efficiency in terms of computation time and memory consumption is investigated by means
of a sphere and a submarine-like structure (Fig. 1).

5.1. Spherical Shell Structure

The first problem is a spherical shell structure driven by a harmonic point force of 10 N at the
north pole. The structure has a diameter of 10 m and a shell thickness of 5 cm. It is built of
steel with a Young’s modulus of 207 GPa and a Poisson’s ratio of 0.3. The sphere is totally sub-
merged in water. For this type of problem, an analytical series solution is available [5]. Figure 2
compares the FE/BE solution with the analytical solution. The structure is discretized by 2600
SHELL63 elements of triangular shape. Both, the direct coupling formulation and the Lagrange
formulation show nearly the same results so that the two graphs coincide. Both solutions show
a low deviation from the analytical solution. There is a strong influence of the coupling, as the
first three uncoupled structural eigenfrequencies are at 122 Hz, 144 Hz and 152 Hz. Obviously,
the hydromass effect shifts the resonances significantly to smaller frequencies demonstrating
the necessity of a strong coupling scheme.

In both formulations, the most time consuming part is the evaluation of the BE matrix-
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Figure 3. Spherical shell structure (1334 elements): Number of BE matrix-vector evaluations of the direct
coupling formulations (left) and of the Lagrange coupling formulation (right) for different precondition-
ers.

vector product by means of the FMM algorithm. Therefore, the number of evaluated products
is compared for both formulations with different preconditioners. Figure 3 shows the number
of matrix-vector evaluations for the direct coupling formulation (left) and the Lagrange formu-
lation (right). The most efficient solver is a combination of a direct LU solver for the FE part
and an ILU preconditioned GMRES working on the reduced system. The use of an AIP instead
of an ILU shows a similar performance. Due to the nested inner-outer iteration scheme of the
Lagrange formulation, the number of matrix-vector products is significantly larger. One has to
mention, that a GMRES without any preconditioning was used for the outer loop. Additionally,
the efficiency could by improved by applying an inexact Uzawa algorithm [3].

Concerning the memory consumption, the two formulations mainly differ in their near-
fields. In case of the Lagrange solver, the memory consumption for the nearfield is 45 MB
compared to 31 MB in case of the direct formulation. The reason is, that it is more expensive to
store Ṽ and (1

2
Ĩ + K̃) of the Lagrange scheme (15) than CBE of the direct formulation (12). The

two remaining matrices D̃ and KBE have the same memory consumption.

5.2. Submarine-Like Structure

In order to show that the direct coupling formulation can efficiently simulate large scale prob-
lems, a second structure is investigated. The structure (Fig. 1) consists of a 20 m long cylinder
with a diameter of 2 m and spherical caps on both sides. Stiffeners are mounted every 2 m
along the center-line. An intermediate bottom is additionally included in the model. The shell
thickness is 2cm and the material data as mentioned above are applied. In this case, a Raleigh
damping with α=50 1

s and β=1e-6 s is included in the simulation. The structure is discretisized
with 10,600 SHELL63 elements of quadrilateral shape. The structure is excited by six harmonic
point forces.

Figure 4 (left) shows the results of frequency sweeps of the pure FE solution and coupled
FE/BE solutions with and without Rayleigh damping. Due to the hydromass effect there is a
significant shift of the resonance frequencies. If damping is considered, the resonances in the
frequency range between 50 and 100 Hz almost disappear. The right plot shows the necessary
BE matrix-vector product evaluations when the direct coupling algorithm on the reduced system
is applied with a ILU preconditioner. The approach shows a good convergence with less than
60 evaluations over a wide range. Due to the high efficiency and low memory consumption,
even frequency sweeps with 200 individual frequency steps can be computed without difficulty.
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Figure 4. Submarine-like structure: Frequency response at node 2 in vertical direction (left) and number
of iterations for the direct coupling scheme with the reduced system(right).

In contrast to this, the number of necessary matrix-vector evaluations in case of the Lagrange
formulation would be too high to run these frequency sweeps with the Lagrange coupling for-
mulation on a standard business PC within a reasonable amount of time.

6. CONCLUSION

The investigations show, that both coupling formulations show a good accuracy compared to
an analytical solution. Both formulations are studied with different preconditioners which turn
out to have a significant influence on the convergence behavior. In terms of efficiency, the direct
coupling formulation appears to be superior on the Lagrange formulation for the examined
model problem. Due to the low number of iterations and the applications of the fast multipole
boundary element method, even problems with more than 100,000 dofs can be simulated. Con-
cerning the memory consumption, the direct coupling formulation is more advantageous. The
simulation tool turns out to be well suited to solve typical engineering problems, since the finite
element matrices are imported from the commercial FE package ANSYS.
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