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Abstract

In this paper, we propose to use the phase information of the Short Time Fourier Transform
(STFT) to improve a time-frequency segmentation based on the statistical features of the STFT,
and proposed by the authors in 2006.

If the resolution of the STFT is too low, close components may be segmented in a single
pattern. The idea is to add phase information provided by the reassignment principle in order to
determine if there are more than one component in a pattern instead of two.

Reassignment, originally proposed by Kodera et al. in 1976, is a non-linear method which
creates a new time-frequency representation by moving the spectrogram values away from their
computation place. Reassignment focuses energy components by moving each time-frequency
location to its group delay and instantaneous frequency, that represent more accurately the
component energy. The obtained reassignment vector field associated to a given spectrogram
describes how time-frequency locations are reassigned.

We propose to use the reassignment vector field not to modify the time-frequency rep-
resentation, but to give information on the signal structure. We compute local reassignment
vectors on patterns segmented by the method mentioned above. Given that spectrogram tends
to spread the time-frequency patterns, whereas reassignment method moves back energy to a
pattern’s point, reassignment vectors aim at the pattern. That leads to a pattern’s boundary infor-
mation, which is used to determine how many components are embedded in a single segmented
pattern. Moreover, this information describes the boundaries of frequency modulations as well
as wide band signal, and extends the use of the reassignment principle to wide band signals.

This principle is finally applied to the shaft’s vibrations of a three phase AC induction
engine, in order to separate the different harmonics embedded in a single pattern.
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1. INTRODUCTION

Time-Frequency Representations (TFR) are useful tools in nonstationnary signal analysis. It
describes the spectral energy varying along time. A segmentation task helps such analysis, by
highlighting time-frequency areas containing the signal’s energy.

We have already proposed a segmentation algorithm [[1],[2]], based on the Short Time
Fourier Transform (STFT), defined as

F (h)
x (t, f) =

∫ +∞

−∞
x(t− τ)h∗(τ)e−2πfτdτ, (1)

where h(t) is the window function.
We have taken as signal model x(t) a nonstationnary signal s(t) embedded in a white

Gaussian noise of variance σ2

x(t) = s(t) + n(t). (2)

We have derived the time-frequency coefficients distribution from this model, in order to seg-
ment the TFR in classes, corresponding to different signal patterns.

However, this segmentation may be not ideal. Two different signal patterns may be seg-
mented in a single class. In this paper, we propose to use reassignment information to determine
if there is more than one signal pattern in a single class or not.

The first section presents quickly the TFR segmentation algorithm.
In the second section, the reassignment principle, originally proposed by Kodera et al. in

1976 [3] and reintroduced in 1993 by Auger and Flandrin [4], is presented. Reassignment is a
non-linear method which creates a new time-frequency representation by moving the spectro-
gram values away from their computation place. Its goal is to focus component energy by mov-
ing each (t, f) location to the local gravity center of the signal distribution around (t, f). This
new location may be equivalently defined as the (t′, f ′) site, where t′ and f ′ are the estimated
group delay and instantaneous frequency respectively. Reassignment can be thus considered as
a use of the phase information of the STFT.

Here, only the phase of the reassignment vectors is used to determine the pattern bound-
aries [5].

Finally, an example of merge of theses two approaches is shown in section three. The
boundary detection is applied on a class foremost segmented by the segmentation algorithm [1,
2] in the time-frequency domain. We thus determine if there is one ore more signal components
in this class.

2. STATISTICAL TIME-FREQUENCY SEGMENTATION

The segmentation algorithm used in this paper is based on the statistical features of STFT co-
efficients, defined in equation 1. We summarize here quickly the segmentation principle, more
details are given in [1, 2].

For (t, f) location containing no part of the signal s energy, the real and imaginary parts
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(a) Spectrogram of a dolphin whistle
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(b) Segmentation result of the dolphin whistle

Figure 1. Whistle of a dolphin in underwater acoustic noise. The spectrogram (a) is limited to the normal-
ized frequency [0.2, 0.34] to have a white Gaussian noise on the coefficients. The segmentation (b) gives
signal nine classes labeled from one to ten. The eleventh region labeled 0 is the set of points containing
noise only.

of the STFT coefficients have both a zero mean Gaussian distribution. For locations containing
both noise energy and signal energy, the coefficients have no more a zero mean Gaussian distri-
bution. However, such locations have a higher second order moment than locations containing
noise only. The segmentation principle is to detect the highest second order moments in order
to agglomerate them with a neighbourhood criterion in the TFR.

The segmentation algorithm is iterative, with each iteration made of three phases. First,
the noise level is estimated on the non-segmented locations. Given that for locations containing
both noise and signal, the second order moment is higher than for locations containing only
noise, the noise level is overestimated. Second, the second order moments of all time-frequency
locations are estimated. Given a probability of false alarm, we apply a Neyman-Pearson strategy
to detect locations supposed to contain signal, which are called candidates to the segmentation.
Last, a region growing algorithm is used on the candidates set, in order to create the spectral
patterns, associated to a given label. When a given percentage of candidates are segmented, we
stop the iteration, in order to re-estimate the noise level without the new segmented points.

The algorithm stops when the kurtosis estimated on the non-segmented points reaches
a given threshold, meaning that non-segmented points have a Gaussian distribution. In other
words, we stop the algorithm when non-segmented points are noise only.

Figure 1 shows an example on a dolphin whistle. Given that underwater acoustic noise is
non-white, the frequency band is limited in order to consider white noise only. Spectral patterns
are enough separated on the TFR to be segmented in ten different classes.

Three parameters control the segmentation, the probability of false alarm pfa in the Neyman-
Pearson detection, the proportion pcand of candidates segmented at each iteration, and the thresh-
old tk on the kurtosis. An optimal choice of parameters may be difficult, depending on the signal.
A bad choice of parameters may segment several components in a single class.

In this paper, we propose to use the reassignment vector field in order to determine if there
is one or several components in a single segmented pattern, as a validation of the parameters
set.
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3. BOUNDARIES DETECTION OF TIME-FREQUENCY PATTERNS

3.1. Reassignment method

In order to reassign the spectrogram Sh
x , which is the square modulus of the STFT, we use

another definition of the spectrogram

Sh
x(t, f) =

∫ +∞

−∞

∫ +∞

−∞
Wx(τ, ν)Wh(τ − t, ν − f)dτdν, (3)

where Wx(t, f) and Wh(t, f) are the Wigner-Ville distributions (WVD) of the signal x(t) and
the window h(t) respectively, defined as

Wx(t, f) =

∫ +∞

−∞
x(t + τ/2)x∗(t− τ/2)e−j2πfτdτ. (4)

This definition means that the spectrogram of a signal x(t) is its WVD, smoothed by the
WVD of the spectrogram’s window.

This smoothing spreads the energy coming from the WVD. The reassignment idea is to
focus the spectrogram energy, by moving the energy at the location (t, f) to a new (t′, f ′) point,
center of gravity of the signal’s WVD Wx(t, f), in a neighborhood defined by the smoothing
function Wh(t, f) [6]

t′(t, f) =
1

Sh
x(t, f)

∫ +∞

−∞

∫ +∞

−∞
τWx(τ, ν)Wh(τ − t, ν − f)dτdν (5)

f ′(t, f) =
1

Sh
x(t, f)

∫ +∞

−∞

∫ +∞

−∞
νWx(τ, ν)Wh(τ − t, ν − f)dτdν (6)

The reassignment vector field r(t, f) is defined as

r(t, f) = (t′(t, f)− t, f ′(t, f)− f)T . (7)

An example of such a reassignment vector field is shown on figure 2.

3.2. Boundaries detection

The spectrogram may be considered (equation 4) as the convolution of the WVD of the signal
with a smoothing window. As a result, a spectrogram’s pattern fills a larger area in the time-
frequency representation than in its counterpart in the WVD.

We define here the boundary of a pattern as the difference between the patterns’ supports
in the spectrogram and in the WVD.

Reassignment moves the energy spread by the spectrogram to the local center of gravity of
the time-frequency representation. On a pattern boundary, spectrogram energy will be moved
inward the pattern. Consequently, all reassignment vector located on a pattern boundary will
aim at the pattern. Considering that the boundaries variations are smooth enough, we assume
that reassignment vectors are locally parallel.
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(a) Spectrogram of a chirp.
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(b) Associated theoretical reassignment vector
field.

Figure 2. Example of a linear chirp reassignment. The energy contained in the whole spectrogram (a) is
reassigned theoretically on the line f = t (b).

The idea is to look for time-frequency locations where associated reassignment vectors
and all of its neighbours have close angles. Due to the spectrogram discretization, reassignment
vectors associated to contiguous time-frequency locations may aim at different points, leading
to slightly different angles. In order to avoid this problem, reassignment vectors with close
angles means that the absolute difference of their angles is below a threshold θ0. This parameter
also allows to track the boundary’s variation.

We propose a boundary detector det(t, f) such as

det(t, f) =

1 if |angle(r(t, f))− angle(r(t′, f ′))| ≤ θ0 ∀(t′, f ′) ∈ Nt,f ,

0 otherwise,
(8)

where angle(r) is the angle of vector r 7, Nt,f the considered l1 × l2 neighbourhood around
(t, f) and θ0 a given threshold.

Note that for (t, f) locations not moved by the reassignment, r(t, f) is null. Consequently,
the angle of reassignment vectors associated to such locations is not defined, and these locations
are not taken into consideration.

Figure 3 gives two examples of such boundary detection, both with a Gaussian window
of 127 points, an overlap of 120 points between two consecutive windows and 512 computed
frequencies.

The first signal is a linear chirp time-windowed, displayed on the left of figure 3. The
second one is a time and frequency filtered white Gaussian noise, shown on right. At the top are
the spectrograms, at the middle the angles of the reassignment vector fields and at the bottom
the detection results.

In these two cases, the boundary is detected. Note that for the second case, reassignment
vectors inside the pattern aim at locally high realization of noise, and local pseudo-boundaries
are detected.
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Figure 3. Examples of boundary detection. On the left a linear chirp of equation x(t) = ei2πt2/2, win-
dowed in time. On the right a white Gaussian noise filtered in time and frequency. Spectrograms are
displayed at top, angles of the reassignment vectors coded in color from −π to +π at middle and detec-
tion results at bottom.

4. APPLICATION AND MERGE OF THE APPROACHES

We propose in this section to monitor the three-phase AC inductor motor of the test bench
GOTIX of the laboratory (http://www.gipsa-lab.inpg.fr/gotix). In a first time, we segment the
spectrogram of a signal provided by an accelerometer located on the engine shaft. Tracking the
time variations of the harmonics allows to monitor the engine’s speed.
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(a) Spectrogram.
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(b) Segmentation of (a).

Figure 4. Spectrogram portion of the engine shaft’s vibrations (a). The spectrogram is restricted to this
portion n order to limit the points number. (b) gives the result of the segmentation algorithm, with pfa =
10−4, pcand = 0.9 and tk = 1. The main harmonic and its two neighbours are segmented together.
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(a) Angles of the reassignment vectors.
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(b) Detection result.

Figure 5. (a) displays the angles of the reassignment vectors of the segmented class (figure 4 (b)). The de-
tection result of equation 8 is shown on (b). Grey points are classified as noise by the segmentation. There
are boundaries detected inside the class, and not only on the edges: there is more than one component
segmented.

In this application, we want to segment only the main harmonic, in order to recover easily
the engine speed. Figure 4(a) shows a portion of the spectrogram of the engine shaft’s vibrations.
The algorithms are applied only on this restricted spectrogram to limit the point number.

The best monitoring should be when a single harmonic is segmented, which implies a
good choice of set of parameters [2]. In an unsupervised segmentation, we take a non-optimal
set of parameters, and the segmentation algorithm may merge several harmonics in a single
class, as shown on figure 4 (b). In order to improve the segmentation, we apply the boundary
detector of equation 8 on segmented patterns.

We then look at the angle of reassignment vectors on this class to determine if the seg-
mented class corresponds to a single narrow-band component, or to several merged harmonics.
These angles are displayed on figure 5 (a). The results of detection described in equation 8 are
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presented on figure 5 (b). Given that the detected boundaries do not correspond to the segmented
class edges, we conclude that the segmentation have merged more than one components in the
class. Moreover, we distinct clearly the main harmonic boundary in the middle of the pattern,
but the second harmonics boundaries are not as well detected.

The use of the reassignment vectors angles correctly gives a good feedback on the seg-
mentation quality, by showing an estimation of the component number within their boundaries.

5. CONCLUSION

A time-frequency segmentation algorithm, based on the statistical features of the STFT may not
give ideal results, and more information is needed to determine if there is one or more spectral
pattern in a single segmented class.

We add information coming from the reassignment principle. On a pattern’s boundary, all
reassignment vectors aim at the pattern, consequently there’s a continuity of the reassignment
vector’s angle along the boundary. By looking for local homogeneity in the angle of the reas-
signment vectors, we detect the pattern boundaries. This extends the use of the reassignment
principle to wide-band signals.

Applying this detection on the segmented classes gives information on the spectral content
of the classes, and allows to determine if there is one or more signal component segmented
together.
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