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Abstract 
 
The study of random dynamic systems usually requires the definition of an ensemble of 
structures and the solution of the eigenproblem for each member of the ensemble. If the 
process is carried out using a conventional numerical approach, the computational cost 
becomes prohibitive for complex systems. In this work, an alternative numerical method is 
proposed. The results for the response statistics are compared with values obtained from a 
detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical 
behaviour of the response with a reduced computational cost.  

1. INTRODUCTION 

The presence of uncertainties arising from the manufacturing process is unavoidable. These 
uncertainties can be observed in noise and vibration measurements [1] and some effort has 
been made to develop methods for predicting the response statistics of uncertain structures. 
One approach would be to use a conventional deterministic method (e.g. The Finite Element 
method) together with a probabilistic (e.g. the Monte Carlo method) or possibilistic (e.g. 
interval analysis) approach to include the uncertainties in the analysis. This procedure has two 
drawbacks: (i) it becomes computationally unfeasible as the frequency increases and (ii) the 
amount of information required on the statistics of the input parameters is usually not 
available. More recently, a method for assessing the response statistics of random dynamic 
systems was proposed by Langley and Brown [2]. The method assumes that the natural 
frequencies and mode shapes are in accordance with the Gaussian Orthogonal Ensemble 
(GOE) statistical model. The agreement of the natural frequencies and mode shape statistics 
with the GOE statistics has already been reported in the literature [3,4]. However, this 
agreement usually requires the system to be “sufficiently random” and some research is still 
underway to verify the GOE assumption and its applicability. 

In order to study the statistics of random dynamic systems and the applicability of the 
GOE model it is necessary to generate ensembles of dynamic systems, obtain their 
eigenvalues and then calculate their statistics. The choice for a conventional numerical 
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approach would require a great computational power to solve the eigenproblem for each 
member of the ensemble covering the frequency range of interest. The method adopted should 
also be capable of applying different probabilistic models and allow the calculation of the 
energy density statistics. 

In view of the limitations of other methods, an artificial approach is proposed here to 
study the statistics of the response of a random dynamic system. In this new approach, the 
stiffness matrix is assumed to be random and the only source of uncertainty. The new 
approach allows the calculation of the energy density for each member of the ensemble in a 
reasonable time and the modification of the input statistics of the ensemble in a practical way. 
The statistics of the eigenvalues and the energy density obtained using the method are 
compared with the results for random plates modelled using the FE method. The method 
seems to capture the behaviour of the dynamic systems when the level of randomness is 
reduced or symmetries are introduced in the system. The results suggested that the method 
can be used with confidence to investigate the statistics of random system in an efficient way. 

2. NATURAL FREQUENCIES STATISTICS AND ENERGY DENSITY 
VARIANCE 

In order to verify the applicability of the new approach, results for the energy density variance 
and the statistics of the natural frequencies as generated by both the new approach and the 
stochastic FE method are compared with analytical results in what follows. In the case of the 
energy density variance, the numerical results are also compared with values from the 
Variance Theory given in [2]. Considering that the statistics of the eigenvalues of a dynamic 
system follow the GOE, Langley and Brown derived the following equation for the energy 
density relative variance  
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where M = ωηv is the modal overlap factor, v is the modal density, α is the spatial factor and 
E1 is the exponential integral.  

Prior to the comparison of the results for the energy density variance, it is necessary to 
verify the agreement between the natural frequencies statistics obtained numerically and those 
predicted by the GOE model. In what follow, use will be made of the same statistics used by 
Weaver [5] to check the validity of the GOE for aluminium blocks: the natural frequency 
spacing pdf, the number variance Σ2 and the ∆3 function.  

2. RANDOM DYNAMIC SYSTEMS 

2.1 Response of random dynamic systems 

The aim of the following derivation is to establish a link between the probabilistic model used 
to define an ensemble of random structures, its eigenvalue statistics and the statistics of the 
energy density. The equations of motion of a general linear dynamic system can be written in 
the form 
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fxKxM =+&& , (2) 
 

where )1( ηi+= KK  assuming proportional damping with loss factor η, K is the stiffness 
matrix, M is the mass matrix, f is a vector containing the external forces and x is a vector of 
the displacements in generalized coordinates. A coordinate transformation from the 
generalized coordinate system to the modal coordinate system can be performed giving 

 
fUqΛq T=+&& , (3) 

 
where Uqx = , U is the matrix whose columns are the eigenvectors uj , q is the vector with 
the displacements in modal coordinates, )1( ηi+= ΛΛ  and Λ  is a diagonal matrix containing 
the square of the natural frequencies ωj

2. Consider now that the system is a member of an 
ensemble of random systems, each one with its matrices U and Λ. Instead of adopting the 
modal coordinates of each system, we can write the equations of motion of all the members of 
the ensemble based on the natural coordinates of the original or nominal system. In this case, 
we can write 

 
fUqAq T=+&& , (4) 

 
where )1( ηi+= AA , with A being a random symmetric matrix. A is diagonal only in the 
case of the original system. Once more, Eq. (4) may be written in a new coordinate system, 
here called “modal random coordinates”, yielding 

 
fUUqΛq TT

RRRR =+&& , (5) 
 

where )1( ηiRR += ΛΛ , RU  is a matrix containing random eigenvectors, RΛ  is a diagonal 
matrix containing random eigenvalues and qR is a vector with the displacements in modal 
random coordinates. Eq. (5) can be solved to obtained qR, which can then be transformer to 
generalized coordinates to give 

 
[ ] gUΛIUUx T

RRR
12 −

+−= ω , (6) 
 
where it has been noted that the mass matrix is equal to the identity matrix, and fUg T= .  

The aim of this analysis is to find the energy density associated with a random stiffness 
matrix A. The kinetic energy density can be written as 
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where [ ]RΛIB +−= 2ω  and gUr T

R= .  
Eq. (8) yields the kinetic energy density for each member of the ensemble and it is only 

necessary to define the matrix A associated with each member. Thus, based on an ensemble of 
A matrices with controlled statistical inputs, it is possible to calculate the statistics of the 
energy density. This feature allows a study of the influence of the statistical properties of the 
system on the natural frequency and mode shape statistics and, consequently, on the energy 
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density statistics. The procedure is fast and allows the solution of an ensemble of systems 
with a statistically representative size. Various ways of defining the matrix A are discussed in 
the next section. 

2.2 Random Stiffness Matrix 

The matrix A is taken to have the form  
 

,ran0 AAA R+=  (9) 
 

where A0 is a diagonal matrix and Aran is a random symmetric matrix . The matrix A0 can be 
interpreted as the stiffness matrix in modal coordinates of the original dynamic system 
considered in the previous section. The system randomness (the deviation of each member 
from the original system) is introduced through the matrix Aran and can be controlled by the 
constant R. The statistics of the entries of Aran will determine the statistics of the eigenvalues 
of A, and thus those of the energy density. The entries of Aran are divided into three groups to 
allow the randomization of the system in particular ways. The diagonal terms are included in 
Group A, while the off-diagonal terms are divided into Groups B and C. If the matrix is 
divided into quadrants, the off-diagonal terms in quadrants 1 and 4 will be included in Group 
B, while the off-diagonal terms in the other quadrants will constitute group C. For the 
numerical results shown bellow, each entry of Aran was considered to be a Gaussian random 
variable with zero mean and with the variance being dependent on the group ( 2

aσ  for group A, 
2
bσ  for group B and 2

cσ  for group C). This randomization approach of the matrix Aran results 
in an almost constant randomization level for the eigenvalues. This situation is rarely found 
for a real dynamic system, since the uncertainties from the manufacturing process are likely to 
have more effect on higher order modes. The randomization level is not exactly constant over 
the eigenvalues as a result of the limited size of the problem considered. The results presented 
below will be usually related to the eigenvalues and eigenvalue spacings located in the middle 
of the eigenvalue range. The diagonal elements of the matrix A0 are associated with the 
natural frequencies of the nominal system and were properly defined to provide a constant 
modal density (allowing the comparison with results for random plates) and to avoid negative 
values.  

More details on the proposed approach can be found in [6]. 

3. NUMERICAL RESULTS 

3.1 Stochastic FE models 

The results obtained through the numerical approach described in sections 2.1 and 2.2 are 
compared bellow with the statistics of random plates modelled using the FE method. The FE 
models considered only bending waves and the mesh discretization was defined in order to 
represent the mode shapes with sufficient accuracy. The plates were modelled with free-free 
boundary conditions and the models were solved to obtain the natural frequencies and the 
mode shape amplitudes at the excitation point. The energy density was then calculated based 
in theses variables. The probabilistic models adopted are described in what follows. 
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3.3 Overall level of randomness 

The aim of the present analysis is to verify the capacity of the proposed numerical 
method of describing the behaviour of the response statistics for different randomization 
scenarios. Therefore, two situations are investigated: (i) the effect of the overall level of 
randomness is reduced and (ii) the effect of symmetries on the systems.  

The first situation considers the case where the ensemble shifts from an almost 
deterministic behaviour to a condition of high randomness. This situation can be associated 
with two distinct scenarios for real systems: an increase of the randomization level used to 
define the ensemble or an increase in the frequency range, since higher modes are more 
sensitive to the uncertainties. The matrix Aran was defined with 2

aσ = 2 and 122 == cb σσ  
(giving a GOE matrix) and the parameter R was continuously increased. The results for the 
eigenvalue statistics are shown in Fig. 1 for an ensemble of 500 members considering the 
eigenvalue at the centre of the eigenvalue sequence. The curves in the pdf plots are: 
( )Normal distribution, ( ) Exponential distribution, ( ) Rayleigh distribution; and in 
the number variance and ∆3 plots: ( ) GOE statistics, ( ) Poisson statistics, ( ) 
numerical data. Some results are shown in Fig. 2 for a plate with masses attached in random 
locations (500 members). Three sets of results are shown, representing low, mid and high 
frequency modes (the results are centred in these modes).The random masses correspond to 
15% of the mass of the bare plate. It can be seen that the new approach captures the transition 
from a Gaussian pdf to a Rayleigh pdf (GOE model) in a very similar way to what is observed 
for the random plate. 

 

 
Fig. 1 – Eigenvalues statistics - Numerical approach (500 member ensemble) - varying the overall 

level of randomness: a) R = 0.2, b) R = 0.5 and c) R = 2. 
 
The results for the energy density variance are shown in Fig. 3 for the plate with random 

masses (15%) and the numerical data with R = 2 (  numerical result,  GOE theory K = 
3,  GOE theory K = 2.5,  Poisson model K = 3). It can be observed that the results for 
the random plate converge for the Variance theory prediction with increasing model overlap 
while the numerical results also agree with the theory (except the values on the extremes, 
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where the effect of a limited number of eigenvalues can be noted). Reducing the level of 
randomness on the random plate (by reducing the random masses to 7% of the bare plate) 
causes the results to diverge from the theory. This behaviour is also well captured by the 
proposed numerical approach as can be observed in Fig. 4. 
 

 
Fig. 2 – Eigenvalue statistics – Plate with random masses (500 member ensemble). a) Mode 30,         

b) Mode 80 and c) Mode 170. 
 

 
Fig. 3 – Energy density normalized variance. a) Plate with random masses (15%), b) Numerical 

approach for R = 2. 
 

 
Fig. 4 – Energy density normalized variance. a) Plate with random masses (7%), b) Numerical 

approach for R = 0.5. 
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3.4 Symmetries and Poisson statistics 

The next situation is related to the occurrence of Poisson statistics and the presence of 
symmetries. The Poisson model has been previously used for the statistics of the eigenvalues 
[7] and it has been argued that the model may be applicable in the case of the presence of 
symmetries. In order to obtain Poisson statistics, the variance of the off-diagonal terms was 
continuously reduced in the numerical approach and the eigenvalues statistics are shown in 
Fig. 5. The frequency spacing pdf shifts from a Rayleigh pdf to the Exponential pdf (Poisson 
model), while the other statistics also converge to the prediction from the Poisson model.  
 

 
Fig. 5 – Statistics of the eigenvalues of a random matrix (500 member ensemble) – Inducing Poisson 

statistics: a) 5.022 == cb σσ , b) 1.022 == cb σσ  and c) 01.022 == cb σσ . 
 

 
Fig. 6 – Eigenvalue statistics (500 member ensemble) – Rectangular plate with random dimensions.   

a) Mode 20, b) Mode 70 and c) Mode 200. 
 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

8 

The stochastic FE model corresponding to that simulated by the numerical approach 
considers a rectangular plate with random dimensions. In this case all the members of the 
ensemble are also rectangular. The results are shown in Fig. 6 and they display the same trend 
observed through the numerical approach. The results for the energy density variance for both 
situations are shown in Fig. 7. Once more, the numerical approach is capable of predicting an 
oscillatory behaviour on the variance results and how well it agrees with the Variance Theory.  
 

 
Fig. 7 – Energy density normalized variance. a) Rectangular plate with random dimensions (10%),    

b) Numerical approach for R = 2, 12 =aσ  and 01.022 == cb σσ . 

4. CONCLUSIONS 

A new numerical approach has been proposed for the study of the statistics of random 
dynamic systems. Results suggest that the main features regarding the statistics of dynamic 
systems as seen for plates may be reproduced using the new approach. The new approach is 
based on the analysis of a general dynamic system in modal coordinates where the system 
randomness is due only to the stiffness matrix. The fact that the random behaviour of the 
system is determined by the stiffness matrix has been shown not to limit the reproduction of 
the statistics of real systems. The approach also displayed important characteristics required 
for the study of the statistics of random systems: fast solution (allowing the analysis of 
statistically representative ensembles) and easy application of different probabilistic models. 
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