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Abstract 
 
Nearfield holography consists in measuring the acoustic pressure radiated near an extended 
sound source with the aim of deducing its vibratory velocity and, from this information, the 
pressure radiated everywhere else. This well-known procedure rests on hypotheses which are 
still not well mastered today, in particular with respect to boundary conditions. Because of 
this, no quantitative parameter can guarantee the reliability of the results obtained. At a time 
when industrialists must comply with strict norms, this question of guarantee is crucial. In the 
case of the acoustic radiation of an object such as a vehicle wheel, subjected to a vibratory 
stimulus, a holographic antenna placed beside the wheel observes only the front side and its 
rim while the rear side and the thickness of the tyre remain invisible. The invisible vibratory 
area manifests itself through information obtained partly from the complementary part of the 
source plane i.e., the plane containing the front of the wheel but without the front surface 
itself. Numerical simulations (with the help of the BIEM) in the unbounded 3D space show 
how the effect on the invisible area can be described by an impedance relation, thus resulting 
in a problem in the half-3D unbounded space. Usually, Neumann or Dirichlet boundary 
conditions are used on the complementary source plane. What are the consequences of mixed 
boundary conditions both on the hologram pressure and on the vibratory velocity identified? It 
will be shown that these boundary conditions modify the hologram pressure significantly and, 
thus, the reconstruction of the source velocity. This is, in fact, the starting point of the 
geometrical interpretation of nearfield holography, which originates from the field of active 
noise control.  

1. INTRODUCTION 

The question of the veracity of results obtained by acoustic holography can be raised in other 
fields of acoustics (e.g. active noise control). In this paper, it is studied in the case of the 
holography of a circular vibrating object such as, for example, a wheel. The configuration 
studied is shown in Figure 1, and the notion of veracity is approached through the influence of 
the environment of the object being unknown.  
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Figure 1. Configuration of a wheel. 
 
 To show how results obtained by acoustic holography are sensitive to the description of 
the environment of the vibrating objects, a numerical simulation of the experiment is carried 
out first : both sides 1Γ  and  of the wheel are excited by a uniform and unitary vibratory 
velocity, and this object radiates in a unbounded 3D space (for the time being, the area 

2Γ

pΓ , 
representing the thickness of the tyre, does not have a vibratory velocity). The description 
rests on harmonic linear acoustics. In these conditions, the radiated pressure can be obtained 
with the integral equation method classically. 
 Then a numerical simulation of the holographic procedure is presented; the plane  
microphones array is placed parallel to the side of the vibrating object, the vibratory velocity 
of which is to be determined. Parallelism between the hologram plane and the source plane 
emerges from the first holographic procedures where the inversion needed to obtain the 
vibratory velocity was carried out with the Fourier transform [1, 2]. The method consists in 
considering the front surface of the vibrating object as belonging to the source plane, itself the 
boundary plane that limits the 3D unbounded half-space. To be rigorous, it is necessary to 
bring forward the whole rear environment of the wheel, which means the acoustic load behind 
as well as the vibration of the rear surface at 2Γ . This can be done by using the admittance 
both on the area of the front  and on the area of its complementary part  on the source 
plane. This approach originates from a generic 1D problem where the equivalence of the 
operators in 1D space and in 1D half-space has been shown. 

1Γ
c
sΓ

Thus, the holographic method rests on deducing the vibratory velocity of the front side 
, from the hologram , by considering only the 3D unbounded half-space. Here also the 

description of the field is dealt with by the integral equation method, which uses the 
admittance mentioned above. 

1Γ HΓ

In fact, this admittance is unknown and an arbitrary admittance is generally adopted. It 
seems natural here to consider a zero admittance since vibratory velocity  (normal) on the 
rear is identical to that on the front , and also provided the tyre is thin compared with the 
considered wavelength. 

2v

1v

What is the consequence of the arbitrary nature of the admittance on the identified 
vibratory velocity  compared with the real vibratory velocity ? The development of this 
approach leading to the conclusion that errors can exceed 100%, constitutes the purpose of 
this paper. 
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2. DIRECT PROBLEM IN A UNBOUNDED 3D SPACE 

2.1 Analytical resolution by the integral method 

The configuration in an 3D unbounded space imposes reference axes (see Figure 1); moreover 
P corresponds to a point source and Q to a receiver. With the presently chosen time 
convention , and the operator , the acoustic pressure problem is defined by: tje ω 2kH +Δ=
 

0=pH   in  (exterior to the wheel)                  ∞Ω

nn vip ρω−=∂  on  and 1Γ 2Γ                         (1) 
0=∂ pn   on                              pΓ

Sommerfeld condition (radiation at infinity) 
 

The selected elementary solution )),(4(),( ),( QPreQPg QPrkj π−
∞ −=  satisfies the 

Helmholtz equation with )( QP −+ δ  as the right-hand member, and the condition of radiation 
at infinity. Without any source within the domain and by including the boundary conditions, 
the pressure  at a point pertaining to the field )(Qp Ω  can then be written (the normal is 
directed towards the outside of the domain, therefore, entering the wheel): 
 

∫∫ Γ∪Γ∪Γ ∞Γ∪Γ ∞ ∂+=
p

dPQPgPpdPQPgviQp nn
2121

),()(),()( ωρ         (2) 

 
where  is given in the direct problem. With the collocation method by meshing the surface 
in facets, the approximated numerical solution of (2) is sought, resulting in the matricial form: 

nv

 
{ } [ ] { }1( )s np Q iρω−∈∂Ω = −I A B v                       (3) 

 
where A is made up of the auto- and inter-influence terms (with principal value associated 
with the singularity of Green’s function and its first derivative), and B is the transfer of v  on 
the wheel contour ∂Ω  and 

n

 
[ ] { }n

tt viQp )()( 1 dBAIc +−=Ω∈ −ρω                      (4) 
 
Line vectors  and d  come respectively from the second and first terms of equation (2). tc t

2.1 Definition of the conditions on the source plane via admittances 

Pressure  leads to  (here )( Ω∈Qp nv yv± on the source plane) by the discrete form 
 

1 2

2n
p piv

f yπ ρ
−

= −
Δ

                      (5) 

 
where  and  represent the pressures concerning two points separated from each other by 1p 2p

yΔ . The admittance  on the complementary surface Γ  is thus c
sβ

c
s p

vc nc
s ρβ =  and leads to 
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the mixed passive condition ; moreover the admittance 0, =+ pikp c
sy β 1β  on the source 

surface  is 1Γ p
vvc n 1

1
−

= ρβ  (which could be called active admittance) leading to the mixed 

boundary condition 11, vipikp y ωρβ −=+  (following an elementary study on a 1D problem). 
It should be pointed out that, in practice, determining velocity  in the case of nv 1β  is not 
straightforward because the interior pressure of the wheel is not accessible to determine the 
normal acoustic velocity on the vibrating side of the wheel. An approximation has been found 
by calculating a velocity close to the vibrating side. It has appeared a posteriori that the 
ensuing error can be corrected efficiently in an empirical way. Finally we obtain 

. The results shown below were achieved with a wheel radius of 0.32m. c
sβββ ∪= 1

 
 
 
 

 
 
 
 
 

 
Figure 2. Absolute value β  - function of z (x = 0 and y = y1) at 250 Hz for 12 vv  given and extreme 

thinness of the wheel at a), and of a thickness of 10 cm at b). 
  

To become confident in these results, it can be shown that the Neumann boundary 
conditions are obtained i.e.,  when considering the very thin wheel and by 
imposing . Another reason to be confident will be presented in the following stage. 

01 ≈≈ c
sββ

112 == vv

3. DIRECT PROBLEM IN A 3D UNBOUNDED HALF-SPACE 

3.1 Analytical resolution by the integral method 

The configuration in a 3D unbounded half-space is immediately deduced from the previous 
configuration. The acoustic pressure problem is thus defined in the following way: 
 

0=pH     in 
∞

Ω
2

1  ( )                0≥y

11 vipkipy ρωβ −=+∂   on 1Γ                   

0=+∂ pkip c
sy β    on                  c

sΓ

0=∂ py     on extΓ                          
Sommerfeld condition (radiation at infinity) 
 

The equation  on  comes from the shape of the admittance (see Figure 2) on the 

complementary part of the source plane. Indeed  tends towards 0, beyond a certain limit on 
the source plane, and a homogeneous Neumann condition is reached. The area concerned is 

0=∂ py extΓ
c
sβ
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denoted  ( ) ). This condition is essential for the finite meshing of the 

source plane. 
extΓ ()0( szxplane Γ−≡

The selected elementary solution )),(2(),( ),(
21 QPreQPg QPrkj π−
∞ −=  satisfies the 

Helmholtz equation with )( QP −+ δ  as the right-hand member, and the conditions of 
radiation at infinity. Without a source within the domain, and including the boundary 
conditions, the pressure  at a point in the domain )(Qp

∞
Ω

2
1 can then be written  
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β

βωρ
         (7) 

 
where  is given in the direct problem. The approximated solution of (7) is also obtained 
numerically with the collocation method. The matricial writing is as follows:  

nv

 
                  { } { }1

1( ) ( , )c
s s np Q i k iβ β ρω

−
⎡ ⎤∈∂Ω = −⎣ ⎦I A B v           (8) 

 
where  and B have the same significance as in (3). Therefore we obtain  ),( 1

c
sββA

 
[ ] { }n

tc
s

c
s

t vkikiiQp )),(),(()( 1
11 dBAIc +−=Ω∈

−
ββββρω             (9) 

 
where the line vectors  and d  come respectively from the second and third terms and from 
the first term of the second member of the equation (7). Figures 3 and 4 show first the 
equivalence between the unbounded 3D model and half-3D unbounded model, with a certain 
degree of confidence, and afterwards the influence of a disturbance on the velocity or on the 
thickness of the wheel, on the pressure 

tc t

)( sp Γ  and thus on )( 21 ∞Ωp , or more precisely on the 
hologram pressure )( Hp Γ . Here, the hologram plane consists of 121 equidistant nodes 
(11 ), distributed symmetrically along the wheel axis, on a  111× mm 1×  surface at a distance 
yH from the source plane and parallel to the latter. The difference between the unbounded 3D 
model and the half-3D unbounded model (see Figure 4) may result from a numerical error or 
from an intrinsic error from the calculation of 1β . Here also, it is possible to remove 
empirically the error. 
 
 
 
 
  
 
 
 
 
 

 
Figure 3. Absolute surface pressure )( sp Γ  - function of z (x = 0 and y = y1) at 250 Hz for 12 vv   

given and an extreme wheel thinness at a), and a 10cm thickness at b). M1 corresponds to the 
unbounded 3D model and M2 to the half-3D unbounded one. 
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Figure 4. Squared absolute value 2)( MHp Γ  of the average pressure on HΓ  (yH=0.12m) at 250Hz 

- function of  12 vv for a given thickness, e, of the wheel . M1 corresponds to the unbounded 3D 
model and M2 to the half-3D unbounded one. 

4. INVERSE PROBLEM 

The aim of this study is to determine the vibratory velocity of the wheel using the nearfield 
acoustic holography method. What is sought is  i.e., the vibratory field reconstructed on 
the front side  of the wheel, knowing the pressure 

optv1

1Γ )( Hp Γ  on the hologram plane  facing 
the source. This section deals with the influence of mixed boundary conditions, revealed by 
the admittance of the source  plane, upon the identified velocity. 

HΓ

4.1 Approximation of the inverse problem. 

Formally only, determining velocity  starting from the knowledge of  in the domain nv )( Hp Γ

∞Ω 21  requires the calculation of  on the source plane, which itself results from . The 
discretized form of (7) specifies better the steps to follow than the continuous form. Indeed 
equation (7) leads to the matricial form 

)( sp Γ nv

 
{ } { } 111 ),()( ××× = MnMN

c
sN vQp ββE                  (10) 

 
where [ ] )),(),((),( 1

111
tc

s
c
s

tc
s kikii dBAIcE +−=

−
ββββρωββ ; M is the number of points 

in mesh  and N is the number of points from meshing the hologram plane . sΓ HΓ
Within the framework of the least square method and with appropriate hypotheses 

(  and rank(E)=M), it can be concluded that NM ≤
 

{ } [ ] { })(),(*),().,(* 1
1

11 Qpv c
s

c
s

c
sn ββββββ EEE −

≈          (11) 
 
The vibratory velocity obtained is in fact the solution of the algorithm 
 

{ }
[ ] { } { } 2

1 )()(),(*min
Hn

Hsn
c
sv

pv
Γ

Γ−ΓββE           (12) 
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4.2 Results of the reconstruction of the velocity vn

The resolution of an inverse problem often generates instabilities generally arising from a 
poor conditioning of matrix E. These instabilities, usually not mastered a priori, can 
nonetheless be controlled empirically because they arise in general from a concentration of 
calculation points on the mesh and/or of symmetries between the various transfer functions 
i.e., of the position of the hologram plane with regard to the wheel as well as to the 
complementary part (poor conditioning here lies in the dependent lines and/or columns 
resulting from the near-identical transfer functions). Figure 5 shows the mesh of source plane 
(  only) used for the direct problem and for the inverse problem which is well conditioned at 
250 Hz, and for a distance between the hologram plane and the plane source of y

1Γ
H = 0.12m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Mesh of  for the direct problem, a), for the inverse problem, b). 1Γ
 
Mesh b) is thus made in order to obtain a better distributed density of collocation points than 
in mesh a). In addition the hologram plane is dissymmetrical to the wheel axis. Lastly, in the 
case of a unitary stimulus  uniformly distributed on the wheel, including a disturbance on 
the admittance of the source plane (evidenced by a disturbance on 

1v

12 vv  obtained by the 
unbounded 3D model) the reconstructed velocity is shown to present an error of up to 
140% (see Figure 6). 

optv1

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Reconstruction of  (m/s) – function of  optv1 12 vv  with a thin wheel  
at 250Hz and yH=0.12m.  

0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

optv1

12 vv

-0.200.2

x

-1-0.500.51y

-0.2

0

0.2

z

-0.200.2
x

-1-0.500.5y 1

-0.2

0

0.2

z

a) b) (m) (m) 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

5. CONCLUSION 

Results achieved with the numerical simulations presented show that the conditions on the 
whole source plane (area  and complementary part ) vary according to the rear acoustic 
load and to the disturbances arising from stimuli  and  , and also according to the 
geometry of the system (shown here by a variation in the thickness of the wheel). Thus, each 
perturbation leads to an admittance on plane 

1Γ
c
sΓ

1v 2v

sΓ . It is noteworthy that this local reaction (i.e., 
a relation between the pressure and the normal velocity at the same point) appears to be 
sufficient to describe phenomena in the 3D space into the 3D half-space. The pressure 
calculated on the hologram is also dependent on these disturbances. 

In the case studied here, it was shown that,  at a certain distance from the source, 
whatever the stimulus or the geometry, Neumann boundary conditions on the plane source but 
far from the surface source itself are definitely satisfactory. As has been observed, the 
influence of β  is close to the source and decreases more or less quickly. 

Under these conditions, the transfer of the rear acoustic load onto the source plane has a 
significant influence on the identified velocity, and it is difficult to trust results achieved via 
arbitrary boundary conditions. Is it possible to identify these boundary conditions as well as 
the vibratory velocity? To answer the question, we will take as a starting point the procedure 
initiated in [3] which, in an analytical and much easier situation, resorted to a geometrical 
method to improve model when erroneous, in order to guarantee the result obtained 
even when there is also an error on the objective 

),( 1
c
sββE

)( Hp Γ . 
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