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Abstract

Recently a new approach to identify modal parameters from output-only transmissibility mea-
surements was introduced. In general, the poles that are identi�ed from transmissibility mea-
surements do not correspond with the system's poles. However, by combining transmissibility
measurements under different loading conditions, it has been shown that model parameters can
be identi�ed. In the previous papers on this topic a single input situation was assumed. In order
that the method should be useful for operational modal analysis, where there are in general a
number of simultaneous sources, a generalization of the technique with a multiple input as-
sumption is proposed. In this paper the extended technique is demonstrated and validated by
means of an experimental test on a beam.

1. INTRODUCTION

1.1. Experimental and operational modal analysis

During the last decade modal analysis has become a key technology in structural dynamics
analysis [1]. Experimental modal analysis (EMA) identi�es a modal model, [H(ω)], from the
measured forces applied to the test structure, {F (ω)}, and the measured vibration responses
{X(ω)},

{X(ω)} = [H(ω)]{F (ω)} (1)

with

[H(ω)] =
Nm∑
m=1

{φm}{Lm}T

iω − λm

+
{φm}∗{Lm}H

iω − λ∗m
(2)

and
λm = −σm + iωdm (3)
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The modal model (2) expresses the dynamical behavior of the structure as a linear com-
bination of Nm resonant modes. Each mode is de�ned by a damped resonant frequency, fdm =

ωdm/2π, a damping ratio, ζm = σm/|λm|, a mode shape vector, {φm}, and a modal participa-
tion vector, {Lm}. These modal parameters depend on the geometry, material properties and
boundary conditions of the structure.

More recently, system identi�cation techniques were developed to identify the modal
model from the structure under its operational conditions using output-only data [2]. These
techniques, referred to as operational modal analysis (OMA) or output-only modal analysis,
take advantage of the ambient excitation due to e.g. traf�c and wind. During an EMA, the struc-
ture is often removed from its operating environment and tested in laboratory conditions. The
laboratory experimental situation can differ signi�cantly from the real-life operating conditions.
An important advantage of OMA is that the structure can remain in its normal operating con-
dition. This allows the identi�cation of more realistic modal models for in-operation structures.
Frequency-domain output-only estimators start from power spectra. It can be shown that �
assuming the operational forces to be white noise sequences � the power spectrum matrix or
covariance matrix, [SX(ω)] = cov({X(ω)}), satis�es

[SX(ω)] =
Nm∑
m=1

{φm}{Km}T

iω − λm

+
{φm}∗{Km}H

iω − λ∗m
− {φm}{Km}T

iω + λm

− {φm}∗{Km}H

iω + λ∗m
(4)

with {Km} the operational participation vectors, which depend on the modal participation vec-
tor, {Lm}, and the power spectrum matrix of the unknown operational forces.

1.2. Transmissibilities

In this paper attention will be paid to the use of transmissibilities to derive modal parameters
[3]. Contrary to the classical approach of Section 1.1 no assumption about the nature of forces
will be required. In general, it is not possible to identify modal parameters from transmissibility
measurements. Transmissibilities, as used in this paper, are obtained by taking the ratio of two
response spectra, i.e. Tij(ω) = Xi(ω)

Xj(ω)
. By assuming a single force that is located in, say, the

input degree of freedom (DOF) k, it is readily veri�ed that the transmissibility reduces to

Tij(ω) =
Xi(ω)

Xj(ω)
=

Hik(ω)Fk(ω)

Hjk(ω)Fk(ω)
=

Nik(ω)

Njk(ω)
, T k

ij(ω) (5)

with Nik(ω) and Njk(ω) the numerator polynomials occurring in the transfer-function models
Hik = Nik(ω)

D(ω)
and Hjk =

Njk(ω)

D(ω)
. This situation is de�ned as the - Single Reference Single Input

Case - (SRSI) with Xj(ω) the reference response. However in real operational conditions we
mostly deal with a multiple input situation. In general an unknown number of simultaneous
sources are exciting the structure, some of which may be distributed.

In this situation the transmissibility reduces to:

Tij(ω) =
Xi(ω)

Xj(ω)
=

∑n
k=1 Hik(ω)Fk(ω)∑n
k=1 Hjk(ω)Fk(ω)

=

∑n
k=1 Nik(ω)Fk(ω)∑n
k=1 Njk(ω)Fk(ω)

(6)

with n the number of forces applied to the structure. This last will be de�ned as the - Sin-
gle Reference Multiple Input Case - (SRMI). Note that in both cases the common-denominator
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polynomial, D(ω), which roots are the system's poles, λm, disappears by taking the ratio of the
two response spectra. Consequently, the poles of the transmissibility functions (5) and (6) equal
the zeroes of transfer function Hjk(ω), i.e. the roots of the numerator polynomial Njk(ω). So,
in general, the peaks in the magnitude of a transmissibility function do not at all coincide with
the resonances of the system. In Section 2 and Section 3 it will be shown that by combining
transmissibility measurements under different loading conditions it is still possible to identify
the modal parameters (i.e., resonant frequencies, damping ratios and mode shape vectors).

2. THEORETICAL RESULTS

2.1. Single Reference Single Input (SRSI)

In this case one can verify that the transmissibility function (5) does not depend on the amplitude
of the force Fk(ω) and only depends on its location, indicated by k By making use of the modal
model (2) between input DOF, k, and, say, output DOF, i,

Hik(ω) =
Nm∑
m=1

φimLkm

iω − λm

+
φ∗imL∗km

iω − λ∗m
(7)

in the Laplace domain (obtained by replacing iω by the Laplace domain variable s) one con-
cludes that the limit value of the transmissibility function (5) for s going to the system's poles,
λm, converges to

lim
s→λm

T k
ij(ω) =

φimLkm

φjmLkm

=
φim

φjm

(8)

and becomes independent of the location of the input DOF k of the (unknown) force. Conse-
quently, the substraction of two transmissibility functions with the same output DOFs, (i, j),
but with different input DOFs, (k, l) satis�es

lim
s→λm

(
T k

ij(ω)− T l
ij(ω)

)
=

φim

φjm

− φim

φjm

= 0 (9)

This means that the system's poles, λm, are zeroes of the rational function ∆T kl
ij (ω) , T k

ij(ω)−
T l

ij(ω), and, consequently, poles of its inverse, i.e.

∆−1T kl
ij (ω) , 1

∆T kl
ij (ω)

=
1

T k
ij(ω)− T l

ij(ω)
(10)

2.2. Single Reference Multiple Input (SRMI)

Note that it is no longer possible to eliminate the forces Fk(ω), and so the transmissibility
function (6) not only depends this time on the location but also on the amplitude of those forces.
Never the less in equation (11) one can still verify that the above transmissibility functions for
different forces (e.g. different locations of the forces, different number of forces or different
amplitudes of the forces) still converge to the same unique value in the system's poles, and
therefore the proposed technique is still applicable.
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lim
s→λm

Tij(ω) =
φimLT

1mF1(ω) + φimLT
2mF2(ω) + ... + φimLT

nmFn(ω)

φjmLT
1mF1(ω) + φjmLT

2mF2(ω) + ... + φjmLT
nmFn(ω)

=
φim

φjm

(11)

Above remark shows the robustness of the method since it demonstrates that the procedure
is not harmed by the fact that we have several forces exciting the structure simultaneously. These
forces can be unknown and distributed. In order to use the transmissibility OMA procedure in
operational conditions with a multiple input or distributed load it is suf�cient that the loads
change in position, amplitude or number of applied loads. These different loading conditions
can be obtained by e.g a change in the ambient forces (e.g. change of wind-level/wind-direction)
or in case of stationary ambient loads by adding arti�cial applied forces (e.g. impact hammer)
in different locations.

3. EXTRACTING THE MODAL PARAMETERS

The correct system's poles can now easily be identi�ed, by directly applying a frequency domain
estimator [2] to the ∆−1T kl

ij (ω) functions. In this way both the damped resonant frequencies and
the damping ratios of each mode in the frequency range of interest will be obtained. However
,in general, only a subset of the poles of ∆−1T kl

ij (ω) will correspond to the real system's poles.
This can be veri�ed by the fact that the rational function ∆−1T kl

ij can be rewritten as

∆−1T kl
ij (ω) =

1
Hik(ω)
Hjk(ω)

− Hil(ω)
Hjl(ω)

=
Hjk(ω)Hjl(ω)

Hik(ω)Hjl(ω)−Hil(ω)Hjk(ω)

=
Njk(ω)Njl(ω)

Nik(ω)Njl(ω)−Nil(ω)Njk(ω)
(12)

and so, the order of the polynomial, Nik(ω)Njl(ω)−Nil(ω)Njk(ω), can exceed the order
of the common-denominator polynomial, D(ω). This means that ∆−1T kl

ij (ω) can contain more
poles than the system's poles only.

In order to reduce the risk to identify additional poles one can build a - virtual frequency
response matrix - by using multiple transmissibility functions under different loading condi-
tions.

[Hvirt(ω)] =




T k
ir(ω) T l

ir(ω) Tm
ir (ω)

T k
jr(ω) T l

jr(ω) Tm
jr (ω)

T k
or(ω) T l

or(ω) Tm
or (ω)




−1

(13)

To build the above matrix 9 different Transmissibility functions were used with 1 refer-
ence DOF, (r), and 3 output DOFs, (i, j, o), under 3 different loading conditions , (k, l,m).

The elements of this matrix are again rational functions with poles that correspond with
the exact system poles. One can easily verify this. Consider the matrix in the case of 1 reference,
1 output DOF, 2 loading conditions and a second row equal to ones. The determinant of this
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matrix reduces to a above de�ned ∆−1T kl
ij (ω) functions. By performing simultaneous a modal

analysis on all elements of the above de�ned virtual frequency response matrix and imposing
that all elements have a common denominator the real system poles can directly be identi�ed.

In a second step it is also possible to obtain unscaled mode shape vectors by estimating the
different transmissibility measurements Tir(ω) (for i = 1, . . . , n with n the number of measured
output DOFs and r a �xed chosen reference) and evaluate them in the above obtained system
poles. This follows directly form equation (8). The value of the mode shape in the reference
DOF is set to 1.

4. EXPERIMENTAL RESULTS

In order to investigate the ef�ciency of the proposed procedure, experiments have been done for
a free-free beam shown in Figure 1. We can assume that, for small vibrations as encountered in
our experiments, the system behaves linearly. 4 shakers were used to provide stationary noise
excitation (from the left to right you see shaker 1 up to 4). A free run measurement of 40 seconds
and a total of 10 Hanning windowed averages of 4096 discrete time samples have been taken
for each experiment. The frequency resolution was 0.25Hz. A total of 11 accelerometers where
equally distributed over the full length of the beam (the numbering starts from the left free
end of the beam). In this paper modal parameters are identi�ed with the least squares complex
frequency domain estimator (lscf) [2]. A single reference case is employed; we will consider
cross power spectra and transmissibility functions with reference to the �rst accelerometer only,
leading to 10 cross power spectra and 10 transmissibility functions for each experiment. This
experimental setup will allow us to identify the �rst 4 bending modes.

Figure 1. Experimental setup for the free-free beam structure

The necessary condition for applying the proposed transmissibility OMA approach is that
the loading conditions are changing during the test. This can be achieved in several ways, as
mentioned above (e.g. different locations of the applied forces, different number of forces or
different amplitudes of the forces). In this experiment we will consider the last situation, 3
different loading conditions will be considered. Figure 2 shows the normalized amplitudes of
the input signal of the 4 different shakers for the 3 different loading conditions.

Next, the transmissibility between different outputs is computed and compared in Fig-
ure 3 for the 3 different excitation conditions, T k

41, T k
71 and T k

111 with k = 1, . . . , 3. One notice
that there are 4 frequencies where all 3 transmissibilities cross each other. These frequencies
correspondent with the resonance frequencies of the �rst 4 bending modes of the beam, which
is in agreement with the theoretical results of Section 2.

Starting from transmissibility measurements under different loading conditions, several
∆−1T kl

ij (ω) functions � de�ned in (10) � can be computed. These functions together with
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Figure 2. the normalized amplitudes of the input signal of the 4 different shakers used during the 3
different setups

0 100 200 300 400 500 600
−50

−40

−30

−20

−10

0

10

20

FREQ. (Hz)

A
M

P
L.

 (
dB

)

 

 

T
41
1

T
41
2

T
41
3

0 100 200 300 400 500 600
−40

−30

−20

−10

0

10

20

30

FREQ. (Hz)

A
M

P
L.

 (
dB

)

 

 

T
71
1

T
71
2

T
71
3

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

30

40

FREQ. (Hz)

A
M

P
L.

 (
dB

)

 

 

T
111
1

T
111
2

T
111
3

Figure 3. Transmissibility functions for the 3 different loading conditions with reference DOF 1 and
output DOFs 4,7 and 11

their stabilization diagram, after applying the lscf estimator, are illustrated in Figure 4 for differ-
ent combinations of the force locations k and l. It can be observed that most of the amplitude's
peaks coincide with the resonant frequencies of the �rst 4 bending modes of the beam but addi-
tional stable poles are found. This is in agreement with the theoretical results where was stated
that only a subset of the poles of the ∆−1T kl

ij (ω) functions corespondent with the real system
poles. This can easily be understood by the fact that only 2 transmissibility functions are used
to calculate the ∆−1T kl

ij (ω) functions and by looking to only 2 transmissibility functions in Fig-
ure 3 one notices that additional crossings occur and sometimes the transmissibility functions
even coincide over a certain frequency band.
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Figure 4. Transmissibility-based functions and their stabilization diagrams.

To reduce the risk to identify additional poles a different approach was proposed by cal-
culating a virtual frequency response matrix . This new approach allows us to compare and
evaluate more than 2 transmissibility functions at the same time.

6



ICSV14 � 9�12 July 2007 � Cairns � Australia

The following virtual frequency response matrix was used.

[Hvirt(ω)] =




T 1
71(ω) T 2

71(ω) T 3
71(ω)

T 1
41(ω) T 2

41(ω) T 3
41(ω)

T 1
111(ω) T 2

111(ω) T 3
111(ω)




−1

(14)

The elements of this matrix are shown in Figure 5 and compared with the measured cross
power spectra.
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Figure 5. Cross power spectra (left) and elements of the virtual frequency response matrix (right).

By using the lscf estimator [2], on both the cross power spectra as well as the elements of
the virtual frequency response matrix the modal parameters can be estimated. These functions
together with their stabilization diagram are illustrated in Figure 6
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Figure 6. Stabilization diagram Cross power spectra (left) and the virtual frequency response matrix
(right).

One notices that in this case the enhanced transmissibility approach results only in 4
stable poles that corresponded with the �rst 4 bending modes of the beam (Note: a lower modal
order was needed to identify all 4 modes in the transmissibility approach in comparison with
the classical OMA approach). In the frequency range of 250-300Hz the in�uence of a badly
excited and badly measured �rst torsion mode is present (Both shakers and sensors are placed
on the nodal line of this mode). The identi�ed damped natural frequencies and damping ratios
are summarized in Table 1.
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Table 1. Comparison of the estimated damping ratios and damped natural frequencies obtained from the
cross power spectra measurements and the transmissibility-based approach.

ζ(S)[%] ζ(Hvirt)[%] fd(S) [Hz] fd(Hvirt) [Hz]
0.21 0.22 60.65 60.58
0.53 0.42 172.20 171.93
2.09 1.92 385.21 384.70
0.74 0.73 504.71 505.06

Once the poles are known, it is possible to derive the (operational) mode shapes directly
from the transmissibilities measurements as was explained in the theory. The �rst 4 bending
modes calculated by using transmissibilities measurements and the classical OMA appraoch
are shown in Figure 4 together with their MAC values.
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Figure 7. First 4 modes obtained by cross power spectra (x) and transmissibility approach (full line)

5. CONCLUSIONS

It has been shown in this paper that correct system's poles can be identi�ed starting from trans-
missibility measurements only. A generalization of the technique to a multiple input assumption
is proposed. An enhanced approach, by using a virtual frequency response matrix, was used in
order to reduce the risk in identifying non physical poles. The theoretical results are veri�ed
by means of experimental data. Classical output-only techniques often require the operational
forces to be white noise. This is not necessary for the proposed transmissibility-based approach.
The unknown operational forces can be arbitrary (colored noise, swept sine, impact, ...) as long
as they are persistently exciting in the frequency band of interest.
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