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Abstract

The solution obtained with the acoustical image sources method was shown to be the contribu-
tion of terms issued from a series development of the integral method (believed to be the exact
solution). Missing terms in the geometrical method represent, among others, the contribution of
diffraction. Taking all of them into account would indeed lead back to the full integral method.
Alternatively, would it be possible to consider only a subset of these terms, therefore adding
missing information to the geometrical method? This would bring the latter to its much-awaited
role in the medium-frequency range.

1. INTRODUCTION

In a domain made up of an open angular sector in a 2D-space, it has been shown that the
acoustic field due to the image sources corresponds to the contributions of the first terms of a
series arising from the exact solution obtained by the boundary integral method [1]. It has been
found that such an idea was mentioned earlier [2]. Thanks to this observation, the diffracted
field in the open sector is the difference between two fields, the specular and the exact one.

One could mentally extrapolate that it would be possible to deploy in a series the acoustic
field in a cavity, obtained exactly from the integral representation. The first terms of this series
would correspond to the image sources contributions, the other terms revealing the diffracted
field. By the help of the image sources method alone, the diffracted field is inaccessible. Were
we able to find it (by other means that the integral method), adding the total diffracted field
to the image-source solution would be absurd – in terms of applications – since the integral
solution already leads to the solution.

However, taking into account the observation mentioned above, the diffracted field in an
open sector is straightforward and could easily enrich the acoustic field by means of the very

mailto:vmartin@ccr.jussieu.fr
mailto:thomas.guignard@epfl.ch


ICSV14 • 9–12 July 2007 • Cairns • Australia

first image sources. Could an enrichment of the results obtained from the ray method in a cavity
be achieved in a similar manner ?

The presentation shows the rational process which enables the integral method to be
grafted onto that of image sources, in an attempt to improve the latter. The motivation arises
from today’s hope that the image source method will make it possible to describe the acoustic
fields in the audible medium-frequency range in vehicles.

2. BRIEF RECALL OF THE DESCRIPTION OF ACOUSTIC FIELDS IN AN
OPEN SECTOR

In the two-dimensional open domain, the Helmholtz equationwith the right-hand term−δ(xS −

xR), written as−δ(S −R), is solved by the Green functiong∞(S, R) = − i
4
H−

0 (kr), with k the
wave number andr the distance between the two pointsS andR. When considering the domain
bound by two walls (open sector), the same excitation on the right-hand term is applied. It has
been shown [1] that the elementary solution is then

gθ(S, R) =
∞∑

i=0

Ti(S, R) = g∞(S, R) +

Nθ∑

i=1

g∞(Si, R)

︸ ︷︷ ︸

g̃θ(S,R)

+
∞∑

i=Nθ+1

Ti(S, R)

︸ ︷︷ ︸

δgθ(S,R)

(1)

whereNθ is the number of image sources active in this case andδgθ(S, R) =
∞∑

i=Nθ+1

Ti(S, R) is

the non-specular part of the acoustic field, which will be called diffracted field. The form of the
termsTi(S, R) is relatively simple forR ∈ Γθ. Since the pressure on the boundaries drives the
pressure inside the domain, this study will be limited to a boundary problem for the time being.

3. DESCRIPTION OF THE FIELD INSIDE A CAVITY
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Figure 1. Shape of the bidimensional cavity studied, with visible and (in brackets) invisible image
sources. Note that the cavity represents an extension of an open sector situation (wallsΓ1 andΓ2, in red).
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A bidimensional domain made up of 5 rigid walls is studied here (cf. Fig.1). This cavity
was the subject of an earlier study [3]. Using the image sources method, the pressure at a point
R is

psp(R) = g∞(S, R) +
5∑

n=1

g∞(Sn, R) +
5∑

m=1

5∑

n=1
n 6=m

g∞(Snm, R) +
5∑

l=1

5∑

m=1
m6=l

5∑

n=1
n 6=m

g∞(Snml, R) + . . .

(2)
In fact, some image sources from this series vanish because not suitable for emitting a reflected
ray reaching the receptor pointR (either by being inside the cavity, so-called invalid sources, or
by being "invisible" fromR). For the present case, posingΓθ ≡ Γ1 ∪Γ2 andΓa ≡ Γ3 ∪Γ4 ∪Γ5,
the sources are re-organised as

p
sp
θ (R) = g∞(S, R) +

∑

images /Γθ

g∞(Simages, R)

︸ ︷︷ ︸

(
(

((g∞(S1,R)+g∞(S2,R)+
(

(
(

(

g∞(S12,R)+
(

(
(

(

g∞(S21,R)






g̃θ(S, R)

+
∑

images /Γa

g∞(Simages, R)

︸ ︷︷ ︸

g∞(S3, R) + g∞(S4, R) + g∞(S5, R) +
(

(
(

(

g∞(S34, R) +
(

(
(

(

g∞(S35, R)

+g∞(S43, R) +
(

(
(

(

g∞(S45, R) +
(

(
(

(

g∞(S53, R) +
(

(
(

(

g∞(S54, R) + . . .







B̃(S, R)
+

∑

images /Γa

∑

images /Γθ

g∞(Simages, R)

︸ ︷︷ ︸

(
(

(
(

g∞(S13,R)+g∞(S14,R)+g∞(S15,R)+g∞(S23,R)+g∞(S24,R)+
(

(
(

(
g∞(S25,R)+...

+
∑

images /Γθ

∑

images /Γa

g∞(Simages, R)

︸ ︷︷ ︸

(
(

(
(

g∞(S31,R)+g∞(S32,R)+
(

(
(

(

g∞(S41,R)+g∞(S42,R)+g∞(S51,R)+g∞(S52,R)+...







C̃(S, R)

+
∑

images /Γθ

∑

images /Γa

∑

images /Γθ

g∞(Simages, R)

︸ ︷︷ ︸

...

+ . . .

(3)

where sources that are either invalid or invisible from point R are canceled out. Sources are
only represented up to the second order. Taking the order of source apparition into account, eq.
(3) is written as

p
sp
θ (R) = g̃θ(S, R) + B̃(S, R) + C̃(S, R) (4)

The ·̃ sign specifies that these terms are purely specular contributions. Equation (4) will make it
possible to observe the diffraction effects on the image sources method that are due only to the
open sector, as well as the diffraction due to the non-specular terms on the first consideration of
wallsΓa.
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4. ENRICHMENT OF THE TERM g̃θ(S,R) + B̃(S,R)

4.1. Formulation

As a preliminary, recall that the exact (integral) solutionwith rigid walls and expressed with the
kernelgθ(S, R) is

pex(R) = gθ(S, R) −

∫

Γa≡Γ3∪Γ4∪Γ5

pex(R′)∂n(R′)gθ(R
′, R)dR′ (5)

Discretization ofΓa into facetsΓaj and approximation by collocation lead to

pex(R) = gθ(S, R) +

〈

. . . −

∫

Γaj

∂n(R′)gθ(R
′, R)dR′ . . .

〉

·







...

pex
j (R′ ∈ Γaj)

...







= gθ(S, R) + bT (R) · pex(Γa)

(6)

with the linebT = 〈. . .〉 and columnp = {
...} vectors. The notationpex is maintained in the

discretized form even though only a numerical approximation of it is gained in the process.
WhenR is chosen at the collocation points, one gets

pex(Γa) = (I − A)−1 · gθ(S, Γa) = (I + A − A2 + A3 − . . .) · gθ(S, Γa) (7)

where the matrixA, made up of the linesbT , contains the main value of the integrand
∂n(R′)gθ(R

′, R)dR′ on its diagonal whenR andR′ are merged onΓa. In the process of enriching
psp in psp++ via δgθ(S, R) andδB(S, R), this main value will not intervene. Sincepex(Γa) is
available through (7), eq. (6) leads to

pex(R ∈ Γθ) = gθ(S, R) + bT (R) · I · gθ(S, Γa) + bT (R) · (A−A2 + A3 − . . .) · gθ(S, Γa) (8)

where

bT (R) · I · gθ(S, Γa) =

〈

. . . −

∫

Γaj

∂n(R′)(g̃θ + δgθ)(R
′, R)dR′ . . .

〉

·







...

(g̃θ + δgθ)(S, R′ ∈ Γaj)
...







= (b̃T (R) + δbT (R)) · (g̃θ(S, Γa) + δgθ(S, Γa))

(9)

is the discretized form of the integral

B(S, R) = −

∫

Γa

gθ(S, R′)∂n(R′)gθ(R
′, R)dR′ (10)
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The discrete form of̃B(S, R) = −
∫

Γa

g̃θ(S, R′)∂n(R′)g̃θ(R
′, R)dR′ is then

b̃T (R) · g̃θ(S, Γa) =

〈

. . . −

∫

Γaj

∂n(R′)g̃θ(R
′, R)dR′ . . .

〉

·







...

g̃θ(S, R′ ∈ Γaj)
...







(11)

Accepting the interpretation of the Huyghens’ Principle made in [1] that proved to be so effi-
cient, (11) would be the incident pressure (regardless of sign) onΓa issued by the true sourceS
and its imagesSθ throughΓθ, reflected uponΓa towards pointR. In other words, (11) represents
the contribution of all images of these sources throughΓa, i.e. partB̃(S, R) in (4). Following
(8), one obtains

pex(R ∈ Γθ) = g̃θ(S, R)+δgθ(S, R)+B̃(S, R)+δB(S, R)+bT (R) · (A − A2 + . . .) · gθ(S, Γa)
︸ ︷︷ ︸

C̃(S,R)+δC(S,R)

(12)
In this equation,gθ = g̃θ + δgθ is easily available analytically, as well asB = B̃ + δB through
the more delicate operation (10). The partC = C̃ + δC is here said to be "non-manageable".
Henceforth, an enhanced expression of the specular pressure atR would be

psp++(R) = gθ(S, R) −

∫

Γa

∂n(R′)gθ(R
′, R)gθ(S, R′)dR′ + C̃(S, R) (13)

Since the terms̃gθ andB̃ (i.e. the contribution of the true sourceS, its imagesSθ throughΓθ

and the images of these images throughΓa) are included inpsp, one obtains

psp++(R) = psp(R) + δgθ(S, R) + δB(S, R) (14)

4.2. Access to parts of B(S, R)

The numerical approximation ofB(S, R), leading toδB(S, R) through substraction of̃B(S, R)

(i.e. the contributions ofS, Sθ and their images throughΓa), gives access to the enhancement
stated in (14). However, certain parts ofB can be reached easier by understanding what their
physical meaning could be. Indeed,B can be developed into

B̃(S,R)
︷ ︸︸ ︷

δB(S,R)
︷ ︸︸ ︷

B(S, R) = −

∫

Γa

g̃θ∂ng̃θdR′

︸ ︷︷ ︸

specular reflection of̃gθ

i.e. ofS and its imagesSθ

−

∫

Γa

δgθ∂ng̃θdR′

︸ ︷︷ ︸

specular reflection ofgθ i.e. ofS, Sθ ,
and the effect ofΓa on diffracted terms.

−

∫

Γa

(g̃θ + δgθ)∂nδgθdR′

︸ ︷︷ ︸

"backscattering" of(g̃θ+δgθ)

(15)

where the interpretations are made regardless of sign. The first elementB̃(S, R) = B̃3(S, R) +

B̃4(S, R)+B̃5(S, R) (representing the effect of wallsΓ3, Γ4 andΓ5 respectively) can be obtained
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by a geometrical construction with receptor pointsR3, R4 andR5 as images ofR through the
wallsΓa. In fact let

B̃j(S, R) = −

∫

Γj

g̃θ(S, R′)∂n(R′)g̃θ(R
′, R)dR′ (16)

with j = 3, 4, 5. Following Huyghens’ Principle as in [1] and for walls of infinite length,
B̃j(S, R) can represent the pressure issued fromS andSθ emitted onRj , which is the image of
R throughΓj. In this case, the term−

∫

Γj

(g̃θ + δgθ)∂ng̃θdR′ (j = 3, 4, 5) could be understood

as the specular reflection onΓj of the incident pressure on the same wall coming from the open
sectorΓθ, including the diffraction part. It would also be equal togθ(S, Rj). After a numerical
approximation ofBj(S, R) = −

∫

Γj

gθ∂ngθdR, the contribution−
∫

Γj

(g̃θ + δgθ)∂n(δgθ)dR′ could

be deduced. A straightforward physical meaning of the latest can not be given, but it could cor-
respond to the reflection of the incident pressure onΓj radiated by the open sectorΓθ. For want
of a better name, this quantity is referred to as the "backscattering" ofgθ uponΓj .

Figure2 shows the comparison ofBj(S, R) with −gθ(S, Rj). The differences observed
reveal not only the backscattering, absent fromgθ(S, Rj), but also that in the latter expression
the walls are considered one after the other, thus not takingthe interaction between these walls
Γa into account.
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Figure 2. Comparison of the two ways to gain access to part ofB: Bj, gθ(S,Rj).

It remains to be verified if at the particular pointR(0.17m, 0.05m) observed here the
contribution ofδgθ(S, R)+ δB(S, R) is of sufficient importance to modifỹgθ(S, R)+ B̃(S, R).
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To this end, one should compare the contribution of sources acting in the latter term to the total
amount ofgθ(S, R) + B(S, R). As previously stated, it is complicated to correctly account for
the interaction of the walls iñB, since the number of acting sources is too large to be handled
without errors. Nevertheless, a comparison can be temporarily accepted, while knowing that the
interaction between the wallsΓa is not accounted for. Within this remark, the compared terms
are then

g̃θ(S, R) −
∑

j=3,4,5

g̃θ(S, Rj) andgθ(S, R) + B(S, R) (17)

Figure3 shows the difference between these two terms, which should be nearingδgθ(S, R) +

δB(S, R). It can be seen that a difference is visible in amplitude, butless so on the phase,
which is consistent with the observations on Figure2. Will this small difference in amplitude
be enough to modify the global pressure level inside the cavity?
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Figure 3. Approximation ofδgθ(S,R)+δB(S,R) as the difference between gθ(S,R)+B(S,R) and
g̃θ(S,R) −

∑

j=3,4,5
g̃θ(S,Rj)

4.3. Graft

To obtain an enhanced version of the specular pressure according to Equation (14), one needs
to substract frompsp the sources participating iñgθ + B̃ so as to gain access to the "non-
manageable" part̃C. This value is then added togθ + B (obtained by the integral method) to
finally getpsp++. Figure4 presents the results of this operation for a particular point R. One can
see that this process does indeed modify the specular results, but an enhancement is only visible
in certain parts of the spectrum. Conversely, for other frequencies, the modified values tend to
get further apart from the reference solution. This leads tothe idea that a global modification
could only be obtained by grafting yet more terms to the specular results. As previously stated,
this would remove any interest in the grafting procedure, since the integral method would then
be easier to apply.

5. CONCLUSION

Is it possible to enhance the image sources method so that it becomes competitive in the low-
and medium-frequency range for vehicle-sized cavities? Inthe configuration studied here, a
partial answer to this question is given: the image sources method cannot be enhanced, given
the not significant modifications obtained. Such an answer isimportant considering the vast
amount of work invested in the implementation of geometrical methods. Further than an actual
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Figure 4. Spectra ofpsp++(R) andpsp(R) as compared to a reference solution obtained by finite elements.

answer to the particular application problem tackled here,however, the present development of
a grafting method is definitely of interest. The specificity of the studied situation does not allow
for a general conclusion but for other configurations the answer to the previously asked question
is now to be obtained by following the path that has been laid down in this paper.
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