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Abstract

This paper presents a newly developed hybrid simulation technique for coupled structural-
acoustic analysis, which applies a wave based model for the acoustic cavity and a modally
reduced higher order finite element model for the structural part. The resulting hybrid model
benefits from the computational efficiency of the wave based method, while retaining the finite
element method’s ability to model the structural part of the problem in great detail. Application
of this approach to the analysis of a cavity-backed plate assembly shows the improved computa-
tional efficiency as compared to classical finite element procedures and illustrates the potential
of the hybrid method as a powerful tool for the analysis of coupled structural-acoustic systems.

1. INTRODUCTION

At present, the commonly used numerical simulation techniques for steady-state interior vibro-
acoustic performance analysis are deterministic element-based methods, such as the Finite Ele-
ment Method [1] (FEM). These methods use simple polynomial shape functions to approximate
the dynamic variables within (small) elements of a discretisation of the problem domain. As
wavelengths shorten with increasing frequency, the number of elements and subsequent com-
putational efforts increase. As a result, the practical applicability of the element-based methods
is limited to low frequency problems. Recently, the Noise and Vibration research group of the
K.U.Leuven has developed an alternative deterministic simulation technique for the analysis
of steady-state structural-acoustic problems. This so-called Wave Based Method [2] (WBM)
has shown to be a highly efficient method for low- and mid-frequency analysis of problems
of moderate geometrical complexity. In order to extend its applicability to problems of more
complex geometries, a family of hybrid coupling approaches between the WBM and the FEM
have been proposed [3, 4, 5]. A recent development involves a direct hybrid coupling between
acoustic WB models and structural FE models, which is outlined in the present paper. Through
the introduction of higher-order structural FE models and the use of classical modal reduc-
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tion techniques for the structural FE models, a computationally efficient vibro-acoustic analysis
procedure is obtained, as will be illustrated by means of a numerical validation example.

2. PROBLEM DEFINITION

Figure 1. A 3D coupled
structural-acoustic problem

The steady-state dynamic behaviour of a general 3D coupled
structural-acoustic system, as shown in figure1, is described by
two physical variables: the acoustic pressurep(r) in the inter-
nal acoustic cavity and the combined dynamic in-plane (wx′(r ′),
wy′(r ′)) and out-of-plane deformations (wz′(r ′), θx′(r ′), θy′(r ′))
in the structural domainΩs.

2.1. Acoustic pressure field

The acoustic cavityV is filled with an acoustic fluid, with ambient fluid densityρa and speed
of soundc and is excited at circular frequencyω by an acoustic point sourceq at position
rq(xq, yq, zq). Under the assumption that the fluid in the cavity exhibits linear, inviscid and
adiabatic behaviour, the Helmholtz equation governs the steady-state acoustic pressurep(r)
inside the cavity [6].One boundary condition needs to be specified at each point of the boundary
in order to obtain a well-posed problem. On the partsΩp, Ωv andΩZ of the boundary of the
cavity respectively acoustic pressure, acoustic normal velocity or normal impedance boundary
conditions are specified.

2.2. Structural vibrations

The partΩs of the acoustic boundary consists of a flexible plate assembly, made of a material
with densityρs, Young’s modulusE and Poisson ratioν. The structure is excited harmonically
by a point forceF at positionr ′

F(x
′
F , y

′
F ). Since the Helmholtz equation assumes the acoustic

medium to be inviscid, the acoustic pressure only directly influences the out-of-plane dynamic
deformationswz′(r ′), θx′(r ′) andθy′(r ′) of the structure. To describe these deformations various
plate bending theories are available. The Kirchhoff thin plate bending theory [7] is the most
widely known, but the hybrid methodology applies equally well to other available plate bend-
ing theories, such as for example the more general Reissner-Mindlin theory [7]. The structural
partial differential equation needs to be complemented with appropriate boundary conditions
at each point on the edgeΓs of the structural domain. Two of the possible types of boundary
conditions are imposed kinematic and mechanical boundary conditions.

2.3. Structural-acoustic interactions

In a coupled structural-acoustic system, the acoustic pressure field and the structural displace-
ments mutually influence each other as follows:

• Influence of the structure on the acoustic pressure:The vibrations of the plate act as
a normal velocity excitation for the fluid in the cavity and result in an additional velocity
continuity boundary condition for the fluid.

• Influence of the acoustic pressure on the structure:The acoustic pressure acts as a supple-
mentary load on the structure. This load only affects the out-of-plane bending deformation
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and results in an additional load term in the bending differential equations which is propor-
tional to the acoustic pressure on the ’wetted’ surface.

3. HYBRID MFE-WB METHOD

3.1. Modal FEM for uncoupled structural vibrations

The FEM determines an approximate solution to the problem described by the plate bending
equations and the imposed structural boundary conditions by applying for each of the field vari-
ables an approximation of the type (1) in terms of simple polynomial shape functionsNn(r ′).
These functions are locally defined within a discretisation of the problem domain into a large,
but finite number of small, non-overlapping elements.

wz′(r ′) ≈ ŵz′(r ′) =

nk∑
n=1

Nn(r ′)wz′,n = N · wz′ (1)

The polynomial shape functions do not fulfill the differential equations and may violate the im-
posed mechanical boundary conditions. The approximation errors are minimised by application
of a Galerkin weighted residual formulation [1]. This results in a set of algebraic equations:

Z · d = fs (2)

with Z the structural dynamic stiffness matrix,d the vector containing the unknown nodal
structural deformations andfs the structural loading vector. Solution of (2) yields the defor-
mation components in the nodes of the FE discretisation. The matrixZ is large, symmetric
and sparsely populated and can be decomposed into frequency independent submatrices. These
properties allow the use of very efficient solution algorithms to compute the unknown nodal dis-
placements. A major advantage of the FEM is its versatility regarding geometrical complexity
of the problem domain.

The application of the FEM for real-life engineering problems usually results in very large
models, large memory requirements and long calculation times. However, the model sizes and
subsequent computational efforts may be substantially reduced by using the modal reduction
technique. In this approach, the displacement fieldd is written as a superposition of (some of)
the normal modesVm of the structure. The weighting factors of the different modes, the modal
participation factorsψi, become the new unknowns of the model:

Z̃m ·Ψ = f̃s,m (3)

with Z̃m = Vm
T · Z · Vm and f̃s,m = Vm

T · fs the modally projected stiffness matrix
and loading vector. A rule of thumb states that all modes with eigenfrequencies up to twice the
maximum frequency of interest need to be taken into account to obtain an accurate prediction of
the steady-state dynamic behaviour. Especially in the low- and mid-frequency range, where the
modal densities are fairly low, this results in a significant reduction of the number of structural
degrees of freedom. Moreover, since the system matrices become diagonal, the solution of the
reduced system of equations for each frequency of interest requires very little computational
effort.
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3.2. WBM for uncoupled acoustic problems

The WBM, which is based on an indirect Trefftz approach, partitions the entire problem domain
V into a small number of large, convex subdomains. Within these subdomains, the dynamic
acoustic pressurep(r) is written as a weighted sum̂p(r) of wave functions, which exactly satisfy
the Helmholtz equation , but which may violate the imposed boundary conditions:

p(r) ≈ p̂(r) =
na∑

a=1

Φa(r) · pa + p̂q(r) = Φ · pa + p̂q(r) (4)

with pa an (na × 1) vector of unknown wave function contributionspa andΦ an (1× na)
vector collecting the wave functionsΦa(r). p̂q(r) is a particular solution of the inhomogeneous
Helmholtz equation For a detailed description of these functions used to describe the pressure
in a bounded acoustic domain, the reader is referred to [2].

Since the pressure expansion (4) exactly satisfies the governing equation, the only error
consists of the violation of the imposed boundary conditions. In order to obtain a numerical
model for thena wave function contributions, this error is minimised by applying a weighted
residual formulation, yielding a system ofna equations in thena unknown wave function con-
tributionspa.

Aaa · pa = fa (5)

Solution of this system for the unknown wave function contributionspa and substitution
of these results in (4) yields an approximation̂p(r) for the acoustic pressure response. The
acoustic system matrixAaa is fully populated with complex and frequency dependent elements.
The major advantage of the WBM is the substantially smaller number of dofs required in com-
parison to the FEM. This property, combined with the enhanced convergence properties of the
method, make the WBM a computationally more efficient simulation technique than the FEM
and allow the WBM to be used for structural-acoustic analysis in the mid-frequency range. The
requirement of convexity of the wave based subdomains imposes, however, a limitation to the
practical applicability of the method for complex geometries.

3.3. Hybrid coupling strategy

In many practical examples (e.g., vibro-acoustic modelling of a car body), a complex structure
and a geometrically simple acoustic cavity are in contact. An FE model is more suited to model
the complex structure than the WBM. The acoustic cavity, on the other hand, can be modelled
as a single (or a combination of a limited number of coupled) WB subdomain(s). As proposed
by the authors in [8], the structural vibrations and the acoustic pressure field can be directly
coupled in a hybrid (Modal) FE-WB model by enforcing the velocity continuity conditions on
the acoustic model and by introduction of the acoustic pressure loading term in the structural
equations. Combination of the residual formulations for both domains, application of a Galerkin
approach and projection of the structural FEM model on a modal base yields the following ma-
trix equation for the coupled vibro-acoustic system in terms of the wave function contributions
pa and the modal participation factorsΨ:
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[
Aaa + Caa jωC̃T

as,m

C̃as,m Z̃m

]
·

{
p
Ψ

}
=

{
fa + fsa

f̃s,m + f̃as,m

}
(6)

with C̃T
as,m the modally projected acoustic-structural coupling matrix andf̃as,m the modally

projected structural-acoustic forcing vector due to the acoustic point sourceq. Until now, only
first-order FE parts have been used for modelling the structural part in the hybrid methodology.
However, the hybrid formulations (6) are not restricted to low-order models, but may also be
applied for FE parts of higher order. The following section will discuss the application of second
order (Modal) FEM models and discuss their performance.

4. NUMERICAL VALIDATION

4.1. Model description

Figure 2. Validation example: cavity
backed steel plate assembly

The performance of the hybrid MFE-WB methodol-
ogy is validated through the analysis of the coupled
structural-acoustic problem shown in figure4.1. The
top boundary surfaces of a convex acoustic cavity con-
sists of an assembly of three flat rectangular plates. The
remaining boundaries of the acoustic cavity are acous-
tically rigid. The smallest rectangular bounding box
enclosing the cavity has dimensionsLx × Ly × Lz=
1.5m × 0.9m × 1m. The cavity is filled with air with
an ambient fluid densityρa = 1.1225 kg

m3 and a speed of soundc = 340m
s

. The three plates are
made of steel (E = 210GPa,ν = 0.3,ρ = 7850 kg

m3 ) and they have a thicknesst = 1.5mm.
The system is excited using a structural point forceF = 100N , acting on the center plate at
coordinates (xF ,yF ,zF ) = (1m,0.6m,1m).

4.2. Coupled structural-acoustic models

The validation example in figure4.1 is modelled using both pure FE models and hybrid WB-
MFE models:

• Pure FE models:In order to study the convergence behaviour of the FEM both the structural
plates and the acoustic cavity are modelled using linear and quadratic FEM models. The
linear models combine 4-noded quadrilateral structural elements for the plates with 8-noded
hexahedral elements for the acoustic cavity, while the quadratic FEM models are built using
8-noded quadrilateral structural and 20-noded hexahedral acoustic models. The details of
the different quadratic FEM models, used in the comparison are given in table1. hmax is
the length of the longest side of a finite element in the discretisation andtsolve is the CPU
time needed to solve the different models for a single frequency.fmax,a andfmax,s indicate
the upper frequencies for which the FE models include at least6 elements per acoustic or
structural wavelength (rule of thumb). MSC.Nastran2005r2 is used as FE solver.

• Hybrid WB-MFE models: The hybrid models use the same structural parts as the pure
FE descriptions. The acoustic cavity is modelled using a single acoustic WB domain. By
varying the number of wave functions in the acoustic domain, a single structural FE model
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Table 1. Properties of the quadratic FE models (structural QUAD8 + acoustic HEX20)

dofss dofsa hmax fmax,a fmax,s tsolve

[m] [Hz] [Hz] [s]

FE Quad 1 3768 8260 0.1000 1082 149 3.8

FE Quad 2 5622 16081 0.0750 1443 266 13.6

FE Quad 3 12990 63191 0.0500 2165 598 150.8

FE Quad 4 22494 139397 0.0375 2886 1063 695.4

FE Quad 5 34590 260459 0.0300 3608 1661 3408.9

FE Ref 139410 1513299 0.0150 7215 6643 /

can be used to create several hybrid models. All the quadratic structural models in table1
are used to construct equivalent hybrid models. The number of modal vectors used in the
structural base is determined according to the aforementioned rule of thumb, taking into
account all structural modes up to twice the maximum frequency of interest. The routines to
build and solve the hybrid and the associated WB models are implemented in Matlab 7.0. All
calculations are performed on a 3GHz Intel-based Linux-system with 1 gigabyte of RAM.

4.3. Numerical results

To illustrate that the hybrid MFE-WB method accurately describes the vibro-acoustic coupling
effects between the steel plates and the internal acoustic cavity, figure3 shows a color map of
the acoustic pressure and structural displacement amplitude at150Hz obtained with a hybrid
(left figure) and a FE model using direct dofs for both the structure and cavity (right figure).
Both models use the same FE discretisation for the structure (quadratic FE model 5). The total
time for solving the FE model is 3409 sec, while only 297 sec are needed to build and solve the
hybrid model. The results show a good agreement between both models.

In the hybrid model, structural modes up to300Hz (94 in total) are used in the modal base.
If the same modal reduction is applied for the structure in the pure FE model, the solving time
grows to 41114 sec. The same phenomenon has been observed by the authors in [8] for linear
FE models combining a modal structural and a direct acoustic model. Based on this observation,
the direct solving time is taken as calculation time for the pure FE models.

Figure 3. Color maps at150Hz for the FEM (right) and the hybrid MFE-WB (left) method
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Figure 4. Convergence curves for linear
and quadratic FEM at50Hz (solid line)
and150Hz (dashed line)

In order to compare the computational efficiency
of the hybrid method and the FEM a convergence anal-
ysis is performed. The acoustic pressure at50Hz and
150Hz in 20 response points, uniformly distributed in-
side the acoustic cavity, is calculated for all the models
described in section4.2. The average relative prediction
error with respect to the FE reference model listed in ta-
ble 1 is plotted against the CPU times needed to solve
the different models. Only frequency dependent oper-
ations are taken into account in the calculation time.
For the FEM only the time needed to solve the system
of equations is given. For the hybrid method the time
needed to build the WB system matrix and the hybrid
coupling matrices as well as the time needed to solve the system of equations are considered.

CPU time [s]

R
el

a
ti
v
e

p
re

d
ic

ti
o
n

er
ro

r
[/

]

h=0.075m
h=0.03m

FE quad 2

FE quad 5

100 101 102 103 104
10−4

10−3

10−2

10−1

100

(a) f = 50Hz

CPU time [s]

R
el

a
ti
v
e

p
re

d
ic

ti
o
n

er
ro

r
[/

]

h=0.075m
h=0.03m

FE quad 2

FE quad 5

100 101 102 103 104
10−3

10−2

10−1

100

101

(b) f = 150Hz

Figure 5. Convergence curves for the direct FE-WBM (solid line) and modal FE-WBM (dashed line)

Figure4 compares the convergence rate of the different FE models. From this figure it is
clearly seen that the quadratic models perform much better than their linear counterparts. This
forms the basic motivation for the development of higher order hybrid methodologies. Figure5
compares the convergence rate of different higher order hybrid FE-WB models applying a direct
(FE-WBM, solid lines) and modally reduced (MFE-WBM, dashed lines) structural model with
that of the corresponding quadratic FE models (• markers). The individual convergence curves
for the hybrid models are calculated by combining a fixed structural model (using30 modes at
50Hz and94 modes at150Hz for the MFE-WB models) with an increasing number of wave
functions (ranging from6 till 1376 acoustic dofs). The average structural FE mesh dimensions in
the different hybrid models are0.075m (◦ marker, FE Quad 2) and0.03m (� marker, FE Quad
5). The convergence curves show that, as the number of wave functions increases, the prediction
accuracy of the hybrid models increases steadily until some saturation is reached where the error
remains constant. The saturation level is determined by the density of the structural FE mesh
and it is similar to the error for a pure FE model with the same structural part. As frequency
increases, the computational advantage of the hybrid methodology becomes more apparent. All
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the direct FE-WB models (except the most coarse one at50Hz) converge to the FE precision in a
calculation time which is of the same order of magnitude as the pure FE predictions. The hybrid
MFE-WB method converges much faster (up to a factor≈ 10 for the model withh = 0.03m)
to the same prediction accuracy. This is illustrated more clearly in figure6, where the global
convergence curves at50Hz and150Hz for the quadratic MFE-WBM are compared to those of
the FEM. These curves are obtained by interconnecting the converged hybrid models using the
different structural models, illustrating the effect of simultaneously refining both the structural
and acoustic part of the models, like in the construction of the pure FE convergence curves.
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Figure 6. Global convergence curves for the quadratic MFE-WBM and FEM

5. CONCLUSIONS

This paper describes a newly developed hybrid MFE-WB modelling technique for steady-state
structural-acoustic problems. The motivation for the hybrid approach is the combination of the
advantages of both techniques in a ’best of two worlds’-methodology. The complex structural
part is described in great detail by the geometrically versatile FEM. The application of the
WBM for the acoustic part results in favourable convergence properties. The hybrid method
presented in this paper couples the higher order structural FE and acoustic WB models by
directly enforcing the vibro-acousic interactions. The use of modal reduction techniques for the
structural part results in a significant gain in CPU time while maintaining a comparable level of
prediction accuracy for coupled structural-acoustic behaviour.

A comparison between the FEM and the hybrid MFE-WB method is made based on the
analysis of a cavity-backed steel plate assembly. The results illustrate that the prediction accu-
racy of the hybrid models increases as the number of wave functions increases, until saturation
is reached and the prediction error remains constant at a level similar to that of the FE pre-
dictions. The density of the structural FE model determines the maximum prediction accuracy.
Especially for denser structural meshes, the hybrid method yields a higher accuracy in less com-
putation time. These results illustrate the potential of the hybrid MFE-WB method as a powerful
tool for the prediction of the dynamic behaviour of real-life coupled structural-acoustic systems.

Future research includes a further enhancement of the computational efficiency of the
technique. Furthermore, the possibility of enforcing the structural-acoustic coupling in an in-
direct manner and the introduction of damping materials along the fluid-structure interaction
surface will be explored.



ICSV14 • 9–12 July 2007 • Cairns • Australia

6. ACKNOWLEDGEMENTS

Bert Van Genechten is a Doctoral Fellow of the Fund for Scientific Research - Flanders (F.W.O.),
Belgium.

REFERENCES

[1] O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu,The Finite Element Method - Vol. 1: Its Basis
& Fundamentals, Butterworth Heinemann, Oxford, 2005.

[2] W. Desmet,A wave based prediction technique for coupled vibro-acoustic analysis, Ph.D.
thesis 98D12, Katholieke Universiteit Leuven, Leuven, Belgium, 1998.

[3] B. Van Hal, W. Desmet, D. Vandepitte and P. Sas, "A coupled finite element - wave based
approach for the steady state dynamic analysis of acoustic systems",Journal of Computa-
tional Acoustics11(2), 255-283(2003)

[4] B. Van Hal, W. Desmet and D. Vandepitte, "Hybrid finite element - wave based method
for steady-state interior structural-acoustic problems",Computers & Structures83, 167-
180(2005).

[5] B. Pluymers, C. Vanmaele, W. Desmet and D. Vandepitte, "Application of a hybrid finite
element - Trefftz approach for acoustic analysis",Computer Assisted Mechanics and Engi-
neering Sciences13(3), 427-444(2006).

[6] P.M. Morse and K.Uno. Ingard,Theoretical acoustics, McGraw-Hill, New York, 1968.

[7] O. C. Zienkiewicz and R. L. Taylor,The Finite Element Method - Vol. 2: Solid and and
Structural Mechanics, Butterworth Heinemann, Oxford, 2005.

[8] B. Van Genechten, B. Pluymers, C. Vanmaele, D. Vandepitte and W. Desmet, "On the cou-
pling of Wave Based models with modally reduced Finite Element models for structural-
acoustic analysis",Proceedings of the 2006 International Conference on Noise and Vibra-
tion Engineering(ISMA2006), Louvain, Belgium, 2006, pp. 2383-2404.


	Introduction
	Problem definition
	Acoustic pressure field
	Structural vibrations
	Structural-acoustic interactions

	Hybrid MFE-WB method
	Modal FEM for uncoupled structural vibrations
	WBM for uncoupled acoustic problems
	Hybrid coupling strategy

	Numerical validation
	Model description
	Coupled structural-acoustic models
	Numerical results

	Conclusions
	Acknowledgements

