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Abstract 
 
The satisfactory performance of a machine is concerned with its installation, i.e., with a well-
designed foundation and soil investigation. The vibration amplitude of the machine-
foundation system must be kept under permissible values generally specified by the 
machine’s manufacturers and natural frequencies must be determined to avoid resonance. 
There may be situations when amplitudes of the machine may be within the acceptable limits 
for satisfactory machine operation but the vibrations may affect other machines around, be 
harmful to adjacent structures and precision equipment and annoying to persons. Here in will 
be shown how to predict in a simple way the effect of the vibration due to the machine 
operation on its surroundings considering the foundation as a vibration source on the surface 
of an elastic medium. 

1. INTRODUCTION 

All machines generated unbalanced dynamic loads (forces and moments) that induce 
vibrations. These dynamic loads are caused by machine operation condition such as wear, 
imbalance, misalignment, etc, and must be kept under a safety limit by the maintenance 
personal for the satisfactory operation of the entire plant. Another machine’s vibration 
problem is caused by resonance. The resonance condition is reached when one or more 
frequencies of the exciting loads are near or equal to any of the natural frequencies of the 
machine-foundation-soil system. Unfortunately the resonance problem can’t be readily solved 
because a structural modification will be necessary to bring the vibration level to accepted 
values.The vibration generated by the machine operation condition is then transmits through 
the soil by the block foundation what may affect the vicinity in a bad way. A vibrating footing 
is then a source of wave generation in the soil. Herein the response of a block foundation 
embedded in the soil and excited by a vertical harmonic load will be outlined and used to 
predict vibration response of the foundation. Also the problem of the vibration propagation 
through the soil due to concentrated dynamic load acting on the soil surface will be treated to 
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estimated the decrease in amplitude of the vibration with distance from the source and to 
evaluated the effects of the vibration on the performance of other equipments in the vicinity 
and structures around  
 
2. VIBRATION PROPAGATION THROUGH THE SOIL DUE TO PERIODIC 

CONCENTRATED LOAD 
 

The problem of the surface wave propagation in an elastic medium (elastic half-space) 
was first studied by Lord Rayleigh [7] and is known as the Rayleigh wave. Later Lamb [6] 
studies the response of the medium as it was excited by oscillating vertical force or pulse 
loading acting at a point or along a line on the surface and within the body. See Figure (1).  

Lamb’s solutions for calculation of vertical surface displacement at a distance r from 
the concentrated dynamic load on the surface of the medium may be written as following, 

 
                                                                ( )2iF1FGr

tiPew +
ω

=                                   (1) 

 
in which, P = amplitude of the concentrated oscillating force applied to surface area, 
ω = circular frequency of force application, G = shear modulus of the ground, 
r = radial distance from the load, i = imaginary number, F1, F2 = dimensionless 

Dynamic Boussinesq Displacement Functions and given by the following equations, 
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where ρ is the soil mass density,  
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ν is the Poisson’s ratio of the soil and the s parameter is given by the equation below, 
 

                                                      
( )ν−

ν−=
12

21s ,                                                              (5) 

JO, is the Bessel function of the first kind and order zero; 
YO, is the Bessel function of second kind and order zero; 
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Figure 2. Surface displacement of an elastic medium due to an oscillating concentrated load 
with amplitude P=1(N) and a circular frequency ω = 62.83 (rad/s) or f=10(Hz). Soil data: G= 3.2x107 
(N/m2); mass density ρ=1800 (kg/m3); Poisson’s ratio ν=0.3. Rayleigh velocity VR=123.7 (m/s) and 

wavelength λ=12.4 (m). 

KO, is the Modified Bessel function of order zero; y is the positive real root of the 
equation below and is a function of  Poisson’s ratio ν  only, 

 
                                         0)1y()sy(y4)1y2( 5.025.022222 =−−−−                                             (6) 
 
Kd, is a function of the Poisson’s ration ν and the value for y of Equation (6) and is 

expressed by Equation (7). 
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A plot of the surface displacement caused by a unit-oscillating load with a circular 

frequency ω = 62,8 (rad/s) is shown in Figure (2). In this figure is possible to see how the 
amplitude of the surface wave decreases with the distance from source. The dimensionless 
functions F1 and F2 were numerically evaluated using the trapezoidal method. The surface 
wave, also known as Rayleigh wave, travels at a speed given by the equation below. 

                                                          
                                                           

y
SV

RV =                                                                       (8) 

in which, y is the value obtained using the Equation (6); VS is the shear velocity given 
by the Equation (9). 
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Figure 3. Schematic of a block foundation embe
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Figure 4. Schematic of a one degree-of-freedom

 
The vertical amplitude wO of the steady-state
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Figure 7. Schematic of the two degree of
active isolators and the block foundation
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Table 2. Amplitudes Z1, Z2, Z3, Z4 of the vibratory movements of the system shown in Fig. 5 to 
three specific cases. 

First Case: without the presence of isolation 
mounts 

Z1=Z2=wO 10(µm) 
Z3=Z4 5.4(µm) 
Second Case: active isolation 
Z1 140(µm) 
Z2 0.3(µm) 
Z3=Z4 0.16 (µm) 
Third Case: active and passive isolation 
Z1 140(µm) 
Z2 0.3(µm) 
Z3 0.16 (µm) 
Z4 0.0053 (µm) 

The vibration problem of footings resting on or embedded on the soil was treated here 
considering the solutions given in literature to a circular footing with radius rO. For the case of 
a square and rectangular contact area is acceptable to use solutions of a rigid circular contact 
area as was done herein for approximate response calculations (Prakash and Puri [8], Novak 
and Beredugo [2], Richart et al [11]). Solutions for irregular shapes of the foundation are 
available and must be found in the literature (Gazetas [4]). Also Models with several degrees 
of freedom may be used for predicting the interaction of the machine with its foundation. The 
interaction changes the rotor-bearing critical speeds predicted by the manufacturer what may 
causes excessive vibration of the system (Chen [3]). The results obtained and presented in 
Table 2 shows that when a machine is rigidly bolted to floor or its block foundation, the 
vibration of the machine itself may be reduced compared to the case when active isolators are 
used. The use of active isolators reduces the vibration transmitted through the soil what will 
reduce the bad effects of the vibration on its vicinity. So, when active mounts are provided the 
vibration transmitted to the soil will be reduced but this may cause significant vibration to the 
machine during its operation or even during its starting and stopping stages. The use of 
passive isolation helps to reduce the effect of the vibration and is also possible to provide 
isolation using wave barriers or trench barriers (Prakash and Puri [8], Richart et al [11]).  
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