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Abstract

There has been a strong interest in theory and design of spherical microphone arrays in recent
years due to their possible use in recording directional sounds for surround sound creation. The
theory of such arrays is based on decomposition of sound fields to spherical harmonics which
are the natural basis functions for valid sound fields over three dimensional space. However, due
to physical size of practical spherical arrays, number of extractable spherical harmonic compo-
nents are limited to the third order. This paper investigates the various design issues including
the inherent limitations of the spherical microphone, discretization of the theoretical continuous
spherical microphone into a microphone array and associated spatial aliasing problems, calibra-
tion errors of these microphones and signal processing issues. A fourth order microphone design
was presented and analysed, which allowed the verification, integration and evaluation of the
design issues mentioned earlier, in the context of this design. Overall, the design was capable of
recording a frequency range of[340; 3400]Hz. The work presented in this paper has made the
following main contributions to sound field recording: (i) Analysis of the role of rigid spheres
in improving microphone design; (ii) Analysis of various microphone arrangements, which are
applicable to microphone array design; (ii) A model for analysing the error due to inexact po-
sitioning of microphones in a spherical array; (iii) A set of error measures for error analysis of
spherical microphones; and (iv) Design and analysis of a fourth order spherical microphone.

1. INTRODUCTION

Spherical microphone arrays have been introduced [1, 2] to use in spatial sound recording and
beamforming applications. Over the last 5 years, there has been a strong interest [3, 4] in theory
and design of spherical microphone arrays due to their possible use in recording directional
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sounds for surround sound creation. The theory of such arrays is based on decomposition of
sound fields to spherical harmonics which are the natural basis functions for valid sound fields
over three dimensional space. This paper investigates the various design issues including the
inherent limitations of the spherical microphone, discretization of the theoretical continuous
spherical microphone into a microphone array and associated spatial aliasing problems, and
other errors. We also propose a fourth order design to span a frequency range[340; 3400]Hz.

2. SOUNDFIELD AROUND A RIGID SPHERE

In the literature, spherical microphone arrays has been proposed based on soundfield analysis
around rigid and open (free space) spheres. In this section, we outline the general soundfield
theory as applicable to rigid and open spheres.

Let the centre of the sphere of radiusR be the arbitrary chosen origin of the co-ordinate
system, then an arbitrary soundfield at a pointx = (r, θ, φ; r ≥ R) from the origin is given by

S(x; k) =
∞∑

n=0

n∑
m=−n

γnm(k)bn(k‖x‖)Ynm(x̂), (1)

wherex̂ = x/|x‖, n(≥ 0), m are integers,k = 2πf/c is the wavenumber,f is the frequency,
c is the speed of wave propagation,Ynm(·) are the spherical harmonics,γnm(k) are complex
valued coefficients of the soundfield for wavenumberk, and

bn(k‖x‖) =





jn(k‖x‖)− j
′
n(kR)

h
(1)′
n (kR)

h
(1)
n (k‖x‖), for rigid sphere,

jn(k‖x‖) for open sphere,
(2)

wherejn(·) are the spherical Bessel functions,h
(1)′
n (·) are the spherical Hankel functions of the

second kind, and(·)′ denotes the derivative of a function with respect to its argument. Using the
orthogonal properties of spherical harmonics, we write the analysis equation of the soundfield
as

γnm(k) =
1

bn(k‖x‖)
∫

S(x; k)Y ∗
nm(x̂)dx̂ (3)

where the integration is over the unit sphere. Analogous to the Fourier series coefficients for
a periodic temporal signal, the modal coefficientsγnm(k) in (1) contain all the information
about an arbitrary sound field. Therefore, if we can record them, it is theoretically possible to
reconstruct the acoustic environment using an array of loudspeakers [5, 6].

It is possible to capture the modal coefficients of a sound field by evaluating this integral
over an arbitrary surface, for eachn and−n ≤ m ≤ n desired. This means that it is only
necessary to evaluate the sound field over this surface rather than at each and every point in the
sound field.
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3. DESIGN ISSUES OF SPHERICAL MICROPHONES

Theory of array of spherical microphone arrays [1, 2] are based on capturing soundfield pressure
S(x; k) over all points on the surface of a sphere; i.e., a continuous spherical microphone. In
practice, this is achieved using only a limited number of microphones on the surface. In this sec-
tion, we analyse the inherent limitations of recording from a continuous spherical microphone.
Because such a microphone cannot be practically implemented, we look at issues of discretizing
it by using a microphone array, which introduces problems associated with insufficient spatial
sampling, and the calibrating errors associated with inexact positioning.

3.1. Finite Order Design

In practice, radius of a spherical microphone is small (i.e., up to 20 cm or so). For such a
small radius, lower order soundfield components are dominant and higher orders contribute
very little. This can be observed by studying the nature of the functionsbn(·), which are high
pass for largern (see Fig.1). Conversely, it is difficult to capture higher order components using
a small sphere as the measured soundfield pressure consists less energy from higher orders, thus
enhancing noise. Existing spherical arrays can only record up to a third order of components
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Figure 1.Plots of spherical Bessel functions, (a)jn(k‖x‖), and (b)bn(k‖x‖) for various ordersn.

for entire band of audio frequencies.

3.2. Nature of Spherical Microphone

3.2.1. Open Sphere Configuration

Consider the situation where a continuous spherical microphone of radius‖x‖ = r use to record
the sound field. The work [1] assumes that the continuous spherical microphone is transparent
with respect to the sound field, such that it does not disturb the sound field in any way. This
is called the open sphere configuration. Note that in the case of open sphere,bn(k‖x‖) =

jn(k‖x‖) in the expression of (1). This is plotted in Fig.1. Notice that for small values of
frequencyk, the values ofjn(kr) for n ≥ 2 are small. In addition,jn(kr) has zeros for all
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n ≥ 0. At the corresponding frequenciesk, the modal components of the corresponding orders
n, will be “perceived” by the continuous spherical microphone to be small or equal to zero,
respectively. Therefore, they will be difficult to record at those frequencies. Thus, the presence
of these zeros in (1) means that we are greatly restricted in the range of frequencies for which
an accurate recording can be made.

3.2.2. Rigid Sphere Configuration

The restriction by the zeros of the spherical Bessel functions can be alleviated by using a rigid
spherical configuration, which means that the surface of the continuous spherical microphone
of radius‖x‖ = r coincides with a rigid spherical scatterer (ie. a rigid sphere). In this case, the
rigid spherical scatterer interacts and alters the sound field.

Notice that there are no zeros in the functions,bn(k‖x‖) for rigid spheres (see Fig.1). The
other noticeable advantage of these functions is that at lower values ofk and forn > 0, bn(kr)

is approximately3dB greater thanjn(kr). This is due to diffraction over the rigid sphere [2]. At
higher values of frequencyk, the scattering effects will become more prominent compared to
diffractional effects.

Notice that in the presence of a rigid spherical scatterer, whether the continuous spherical
microphone coincides with it or not, the first zero of the radial responseb0(k|x‖), is shifted to
a larger value ofk‖x‖ than in the case of an open spherical configuration. In terms of design,
this means that a larger range of frequencies can be accurately recorded when either a rigid or
an intermediate spherical configuration is used, compared to an open spherical configuration.

3.3. Modal Aliasing

Modal aliasing occurs when the higher order modal components of the sound field are recog-
nised as lower order modal components. This is analogous to temporal aliasing of signals, where
higher frequency components are recognised as lower frequency components. Modal aliasing
occurs due to insufficient spatial sampling when the theoretical continuous spherical micro-
phone is approximated with a discrete microphone array [1, 2]. A detailed analysis is given in
[7].

Aliasing are introduced, when the integral in (1) is approximated byQ omni-directional
microphones. Assume thatQ is sufficiently large and that the microphones are arranged in a
way, such that this approximation isexactfor resolving the modal coefficients of a sound field
for orders0 ≤ n < N . We denote this order truncated sound field that contains only these
modal components asS0:(N−1)(x; k). Then, the modal coefficients for orders0 ≤ n < N are

γnm(k) =
1

bn(kR)

Q∑
q=1

S0:(N−1)(Rx̂q; k)Y ∗
nm(x̂q)wq =

1

bn(kR)

∫
S0:(N−1)(Rx̂; k)Y ∗

nm(x̂)dx̂.

(4)
However, when the microphone array is exposed to the total sound fieldS(x; k), the modal
coefficients we are concerned with are corrupted by the sound field due to higher order modal
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components, which we denote asSN :∞(x; k). Now, the recorded modal coefficients will be

γ̂nm(k) =
1

jn(kR)

Q∑
q=1

(
S0:(N−1)(Rx̂q; k) + SN :∞(Rx̂q; k)

)
Y ∗

nm(x̂q)wq (5)

= γnm(k) + εnm(k), (6)

where,εnm(k) represents the error due to modal aliasing [1]. This is given by

εnm(k) =
1

jn(kR)

∞∑

n′=N

n′∑

m′=−n′
γn′m′(k)jn′(kR)×

Q∑
q=1

Yn′m′(x̂q)Y
∗
nm(x̂q)wq. (7)

Thus, we can see that modal aliasing is introduced when we use an approximation to the contin-
uous spherical microphone. In the case of the continuous spherical microphone this error goes
to zero. An in-depth analysis of modal aliasing is given in [7]. The constraint (calledorthonor-
mality constraintthat microphone positions has to satisfy to eliminate modal aliasing is given
by [2]

Q∑
q=1

Yn′m′(x̂q)Y
∗
nm(x̂q)wq = δnn′δmm′ , (8)

for 0 ≤ n < N . This constraint ensures that theQ microphones are able to resolve allγnm(k)

exactly for this range ofn, hence the use of the term, orthonormality.

3.4. Microphone Arrangement

There are numerous ways to arrange a finite number of microphones in a spherical array to
provide approximations to the continuous spherical microphone. The extent to which these
arrangements satisfy (8) gives an indication as to the level of accuracy in which the modal
coefficients for these orders can be resolved.

Possible array configurations are (i) Gaussian and trigonometric quadrature arrangements,
(ii) truncated icosahedron arrangements, and (iii) cubature arrangements. Suitablity of each of
these arrangements can be studied [7] in terms of scalability, physical realisability and effi-
ciency. Reader is referred to [7] for an in-depth analysis.

4. FOURTH ORDER DESIGN

4.1. Design Specification

We would like to extend beyond the capabilities of existing designs [1, 2, 3, 4] by choosing
to record the modal components of the sound field for orders0 ≤ n < 5, i.e., a fourth order
microphone. The desired frequency range isf = [340, 3400]Hz, or [1 : 10] frequency band.
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4.2. Error Measures

There are a few sources of error in which we would be interested in assessing a design. These are
(i) Truncation error, (ii) Error of recording, and (iii) Aliasing error. All these errors characterise
the spatial quality of the sound field as opposed to temporal quality and therefore, do not affect
the intelligibility of the sound. Notice that all these error measures vary with the frequency
componentk of the sound field and the distance from the origin,‖x‖.
Truncation Error: is an inherent limitation in any practical design. The fact that a design

is specified to record modal coefficients of orders0 ≤ n < N means that the loss of
information regarding the ordersn ≥ N will introduce errors. The truncation error is
given by

εtrunc(‖x‖; k) =

∫ ∣∣∣S(x; k)− S0:(N−1)(x; k)
∣∣∣
2

dx̂
∫ ∣∣∣S(x; k)

∣∣∣
2

dx̂
= 1−

N−1∑
n=0

n∑
m=−n

∣∣∣γnm(k)jn(k|x‖)
∣∣∣
2

∞∑
n=0

n∑
m=−n

∣∣∣γnm(k)jn(k|x‖)
∣∣∣
2
,

(9)
whereS(x; k) is the original sound field andS0:(N−1)(x; k) is the original sound field
order truncated to include modal components of orders0 ≤ n < N .

Error of Recording: includes the inherent limitations of the use of a single spherical micro-
phone array and the error due to the integration approximation of the continuous spherical
microphone. This is given by

εrec(‖x‖; k) =

∫ ∣∣∣S0:(N−1)(x; k)− S̃0:(N−1)(x; k)
∣∣∣
2

dx̂
∫ ∣∣∣S0:(N−1)(x; k)

∣∣∣
2

dx̂

=

N−1∑
n=0

n∑
m=−n

∣∣∣
(
γnm(k)− γ̃nm(k)

)
jn(k‖x‖)

∣∣∣
2

N−1∑
n=0

n∑
m=−n

∣∣∣γnm(k)jn(k‖x‖)
∣∣∣
2

,

(10)
whereS̃0:(N−1)(x; k) is the perfectly reconstructed sound field from the modal coefficients
recorded fromS0:(N−1)(x; k).

Aliasing Error: is a measure of the extent of modal aliasing, and is given by

εalias(‖x‖; k) =

∫ ∣∣∣S̃0:(N−1)(x; k)− Ŝ0:(N−1)(x; k)
∣∣∣
2

dx̂
∫ ∣∣∣S0:(N−1)(x; k)

∣∣∣
2

dx̂

=

N−1∑
n=0

n∑
m=−n

∣∣∣
(
γ̃nm(k)− γ̂nm(k)

)
jn(k‖x‖)

∣∣∣
2

N−1∑
n=0

n∑
m=−n

∣∣∣γnm(k)jn(k‖x‖)
∣∣∣
2

,

(11)



ICSV14• 9–12 July 2007• Cairns• Australia

whereŜ0:(N−1)(x; k) is the perfectly reconstructed sound field from the modal coefficients
recorded from the original sound field,S(x; k).

4.3. Detailed Design

We use a concentric pair of rigid spherical configuration and a open sphere configuration. This
will enable us to cover the entire frequency band of interest.

We use the truncated icosahedron arrangement since this arrangement satisfies the or-
thonormality constraint of (8) for N = 5 and possesses the ability to prevent aliasing from
5th order modal components [7]. Furthermore, it is the most efficient of the options available,
requiring only 32 microphones.

To specify the level of accuracy desired, we will set two constraints. For a given micro-
phone radiusr, these constraints limit the range of frequenciesk which are recorded. We use
subscriptsu and l to denote the upper bound and the lower bound of a quantity respectively.
The constraints are

1. (kr)u is assigned the value given in Table 3.1 of [7] for N = 6 to minimise the modal
aliasing.

2. (kr)l is assigned the minimum value ofkr such thatεrec(‖x‖; k) ≤ εrec,maxholds, to limit
the error of recording. For argument sake, letεrec,max=5%.

These constraints imply a level of accuracy of recording the modal coefficients for the frequency
range, [kl,ku] or equivalently, [fl,fu].

The analysis of the first constraint directly affects the design of the radius of the mi-
crophone. To minimise modal aliasing from ordersn ≥ 6, we chose(kr)u = 3.87 (which
corresponds toN = 6). Therefore,r = 3.87c/(2πfu). Substituting,fu = 4300Hz gives us
r = 6.2cm. The application of this constraint means that an upper bound has been placed on the
aliasing error within the frequencies in[0, fu].

The second constraint will specify a value offl. The error of recording was calculated for
this design as a function off , and is plotted in Fig.2(a) at various radii from the origin.

The peaking behaviour of the curves can be explained by the fact that as we move towards
lower frequencies, the magnitude ofbn(k‖x‖) for n ≥ 2 becomes small. By considering this
figure and the fact that only a spherical region of radius 0.5m is considered, this allows us to
assign a frequencyfl in which to ensure that the second constraint is satisfied. By observa-
tion, we chosefl = 1100Hz. Therefore, the microphone design satisfies the specifications and
constraints outlined above for the frequencies in the rangef = [fl, fu] = [1100, 3400]Hz.

Thus far, the design does not satisfy the intended frequency range. The approach to solv-
ing this problem is to employ a second microphone array at a larger radius in order to capture
the lower frequencies inf = [340, 1100]Hz. Thus, we use an open spherical microphone, which
encases the inner microphone array. We use the truncated icosahedron arrangement for the open
configuration as well. Again, we use the above two constraints with appropriate values to de-
sign the outer (open) microphone array with radius of15.5cm covering a frequency range of
[0, 1100]Hz.
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Figure 2.(a) Error of recording at various radii, for microphone array atr = 6.2cm with coincident rigid
spherical scatterer. The dotted black line indicates the upper bound to error for0 ≤ ‖x‖ ≤ 0.5m; (b)
Error of recording at various radii, for microphone array atr′ = 15.5cm with a rigid spherical scatterer
atR = 6.2cm. The dotted black line indicates the upper bound to error for0 ≤ ‖x‖ ≤ 0.5m.

In the double array microphone a total of 64 microphones are placed in two spherical
locations. The frequency response of the system satisfies the specified range of[340, 3400]Hz.
Reader is referred to [7] for more detail of the design and simulation results.
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