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Abstract

In many applications of operational modal analysis one is confronted with unknown harmonic

forces. These harmonic components are usually clearly present in the measured response data.

The classical approach to deal with such data consists in eliminating these disturbing compo-

nents from the data. Several techniques can be used to do so. However, when the frequency of

these harmonic components varies during the measurements, this is not always obvious. In this

contribution, an alternative approach will be proposed to deal with harmonic disturbances. This

approach is based on parametrically identified multivariable transmissibilities.

1. INTRODUCTION

Recently, a new approach to identify modal parameters from scalar transmissibility measure-

ments has been proposed. By combining (scalar) transmissibility measurements under different

loading conditions, it has been shown in [1] that the model parameters can be identified from

transmissibilities. Classical output-only techniques often require the operational forces to be

white noise. This is not necessary for the proposed transmissibility-based approach. The un-

known operational forces can be arbitrary (colored noise, swept sine, impact, ...) as long as they

are persistently exciting in the frequency band of interest.

When several uncorrelated operational forces are acting on the structure, the scalar trans-

missibility approach is still applicable although a multivariable approach is expected to result

in more accurate models. In the present paper the multivariable approach will be presented that

can be used to derive modal parameters from arbitrary operational forces — including opera-

tional forces that contain important (time varying) harmonics components. These operational

forces should be persistently exciting in the frequency band of interest.
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2. EXPERIMENTAL AND OPERATIONAL MODAL ANALYSIS

During the last decade modal analysis has become a key technology in structural dynamics

analysis [2, 3, 4]. Experimental modal analysis (EMA) identifies a modal model, [H(ω)], from

the measured forces applied to the test structure, {F (ω)}, and the measured vibration responses

{X(ω)},

{X(ω)} = [H(ω)]{F (ω)} (1)

with

[H(ω)] =
Nm∑
m=1

{φm}{Lm}T

iω − λm

+
{φm}∗{Lm}H

iω − λ∗
m

(2)

and

λm = −σm + iωdm (3)

The modal model (2) expresses the dynamical behavior of the structure as a linear com-

bination of Nm resonant modes. Each mode is defined by a damped resonant frequency, fdm =

ωdm/2π, a damping ratio, ζm = σm/|λm|, a mode shape vector, {φm}, and a modal participa-

tion vector, {Lm}. These modal parameters depend on the geometry, material properties and

boundary conditions of the structure.

More recently, system identification techniques were developed to identify the modal

model from the structure under its operational conditions using output-only data [5, 6, 7, 8].

These techniques, referred to as operational modal analysis (OMA) or output-only modal anal-

ysis, take advantage of the ambient excitation due to e.g. traffic and wind. During an EMA, the

structure is often removed from its operating environment and tested in laboratory conditions.

The laboratory experimental situation can differ significantly from the real-life operating condi-

tions. An important advantage of OMA is that the structure can remain in its normal operating

condition. This allows the identification of more realistic modal models for in-operation struc-

tures. Frequency-domain output-only estimators start from power spectra. It can be shown that

— assuming the operational forces to be white noise sequences — the power spectrum matrix

or covarinace matrix, [SX(ω)] = cov({X(ω)}), safisfies

[SX(ω)] =
Nm∑
m=1

{φm}{Km}T

iω − λm

+
{φm}∗{Km}H

iω − λ∗
m

− {φm}{Km}T

iω + λm

− {φm}∗{Km}H

iω + λ∗
m

(4)

with {Km} the operational participation vectors, which depend on the modal participation vec-

tor, {Lm}, and the power spectrum matrix of the unknown operational forces.

In the next section the scalar transmissibility approach will be briefly recapitulated. This

approach does not require the operational forces to be white noise sequences.
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3. RECAP OF SCALAR TRANSMISSIBILITY APPROACH

In general, it is not possible to identify modal parameters from transmissibility measurements.

Scalar transmissibilities are obtained by taking the ratio of two response spectra, i.e. Tor(ω) =
Xo(ω)
Xr(ω)

. By assuming a single force that is located in, say, the input degree of freedom (DOF) k,

it is readily verified that the transmissibility reduces to

Tor(ω) =
Xo(ω)

Xr(ω)
=

Hok(ω)Fk(ω)

Hrk(ω)Fk(ω)
=

Nok(ω)

Nrk(ω)
� T k

or(ω) (5)

with Nik(ω) and Njk(ω) the numerator polynomials occurring in the transfer-function models

Hok = Nok(ω)
D(ω)

and Hrk = Nrk(ω)
D(ω)

. Note that the common-denominator polynomial, D(ω), which

roots are the system’s poles, λm, disappears by taking the ratio of the two response spectra.

Consequently, the poles of the transmissibility function (5) equal the zeroes of transfer function

Hrk(ω), i.e. the roots of the numerator polynomial Nrk(ω). So, in general, the peaks in the

magnitude of a transmissibility function do not at all coincide with the resonances of the system.

Another important observation is that the transmissibility function is deterministic: the

(stochastic) force disappears by taking the ratio in (5). The power spectra that are used in the

traditional operational modal analysis approaches remain stochastic (the random contribution of

the force is still present). To obtain smooth power spectra measurements averaging techniques

are requires.

Making use of the modal model (6) between input DOF, k, and, say, output DOF, o,

Hok(ω) =
Nm∑
m=1

φomLkm

iω − λm

+
φ∗

omL∗
km

iω − λ∗
m

(6)

one concludes that the limit value of the transmissibility function (5) for the Laplace variable s

(replace iω by s in (6)) going to the system’s poles, λm, converges to

lim
s→λm

T k
or(s) =

φimLkm

φjmLkm

=
φim

φjm

(7)

and is independent of the (unknown) force at input DOF k. Consequently, the substraction of

two transmissibility functions with the same output DOFs, (o, r), but with different input DOFs,

(k, l) satisfies

lim
s→λm

(
T k

or(s) − T l
or(s)

)
=

φom

φrm

− φom

φrm

= 0 (8)

To sum up, the system’s poles, λm, are zeroes of the rational function ΔT kl
or (s) � T k

or(s) −
T l

or(s), and, consequently, poles of its inverse, i.e.

Δ−1T kl
or (s) � 1

ΔT kl
or (s)

=
1

T k
or(s) − T l

or(s)
(9)
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4. MULTIVARIABLE TRANSMISSIBILITY APPROACH

When several (uncorrelated) operational forces are exciting the structure, the scalar transmissi-

bility is in general not deterministic anymore. Indeed, when e.g. 2 operational forces are present,

(5) becomes

Tor(ω) =
Xo(ω)

Xr(ω)
=

Hok(ω)Fk(ω) + Hol(ω)Fl(ω)

Hrk(ω)Fk(ω) + Hrl(ω)Fl(ω)
(10)

and the forces Fk(ω) and Fl(ω) cannot be eliminated anymore. To do so, a multivariable trans-

missibility approach is required. Starting from the transfer function matrix, which related the

reference output spectra, {XR(ω)}, and the remaining output spectra, {XO(ω)}, to the opera-

tional forces, {FK(ω)}, with K = {k, l, . . .} a set representing the operational force locations,

{XR(ω)} = [HK
R (ω)]{FK(ω)} (11)

{XO(ω)} = [HK
O (ω)]{FK(ω)} (12)

it is readily shown that

{XO(ω)} = [HK
O (ω)][HK

R (ω)]−1{XR(ω)} (13)

and

[TK
O,R(ω)] = [HK

O (ω)][HK
R (ω)]−1 = [NK

O (ω)][NK
R (ω)]−1 (14)

with [HK
R (ω)] = [NK

R (ω)][D(ω)]−1, [HK
O (ω)] = [NK

O (ω)][D(ω)]−1 so-called Right Matrix-

Fraction Descriptions (RMFD). One notice that — in analogy with scalar transmissibilities —

also here, the common denominator matrix, [D(ω)], disappear in (14).

5. ESTIMATING MULTIVARIABLE TRANSMISSIBILITIES

Transmissibilities can be obtained using non-parametric estimators (e.g., the H1 estimator in

analogy with FRF measurements) or by means of parametric estimators. First, it is shown that

the non-parametric estimation of multivariable transmissibilities is an ill-posed problem for

lightly-damped structures: the multivariable transmissibilities can become singular at frequen-

cies close to the resonances. Indeed, the H1 estimate of [TO,R(ω)] is given by

[T̂O,R(ω)] = [GXOXR
(ω)][GXRXR

(ω)]−1 (15)

Close to a resonance frequency, the response of the system is proportional to the corresponding

mode shape. This imply that the auto-power matrix [GXRXR
(ω)] could become singular close to

(lightly-damped) resonant frequencies. This is certainly true when a large number of reference

outputs is required.

To circumvent this problem, a parametric frequency-domain identification approach start-

ing directly from input and output spectra [3] can be used to obtain multivariable transmissi-

bilites in a well-conditioned way. The reference outputs, {XR(ω)}, are used as input spectra,

and {XO(ω)} are the output spectra.

Another asset of the parametric approach is that only one measured sequence of the out-
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puts is need to derive the multivariable transmissibility matrix; the non-parametric approach

requires at less Nr (uncorrelated) sequences with Nr the number of reference signals (which

should be equal to the number of uncorrelated operational forces) in order to be able to solve to

non-parametric least-squares problem.

6. DERIVING SYSTEM POLES FROM MULTIVARIABLE
TRANSMISSIBILITY FUNCTIONS

In [1] it has been shown that (scalar) transmissibility function under different loading conditions

are identical in the system poles (see Section 3). For lightly damped systems, this means that

the transmissibility functions cross each other at the resonant frequencies of the system. This is

illustrated in Figure 1(a) for scalar transmissibilities. This property is verified for multivariable

transmissibility functions in Figure 1(b). It turns out that this property is not valid anymore for

multivariable transmissibilities: they do NOT cross each other at the resonant frequencies of

the system! To understand why this is not the case, let us try to find what is the relationship
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Figure 1. (a) Left - Scalar transmissibilities (dotted lines) for different loading conditions cross at the

resonances frequencies. (b) Right - Multivariable transmissibilities (dotted lines) for different loading

conditions do not cross at the resonances frequencies. The solid line is a frequency response function.

between scalar and multivariable transmissibility functions. For simplicity, 2 references will be

considered, R = {1, 2}, and 1 output, O = {3},

X3(ω) = TK
3,1(ω)X1(ω) + TK

3,2(ω)X2(ω) (16)

Dividing by X1(ω) yields,

X3(ω)

X1(ω)
= TK

3,1(ω) + TK
3,2(ω)

X2(ω)

X1(ω)
(17)

where
X2(ω)
X1(ω)

� tK2,1(ω) and
X3(ω)
X1(ω)

� tK3,1(ω) are scalar transmissibility functions corresponding

with a load case K = {k, l}; TK
2,1(ω) and TK

3,1(ω) are the multivariable transmissibilities. This

5



ICSV14 • 9–12 July 2007 • Cairns • Australia

can be reformulated as

[
−TK

3,2(ω) 1
] {

tK2,1(ω)

tK3,1(ω)

}
= TK

3,1(ω) (18)

If for instance the amplitudes of the 2 operational forces in points K = {k, l} are varied, the

multivariable transmissibilities remain unchanged but the scalar ones will change. However,

all possible scalar transmissibilities that can be generated by the 2 operational forces in points

K = {k, l} have to satisfy (18). A unique solution can be obtained by considering a second

load case L, e.g. L = {l, m}. This unique solution can be obtained by solving

[
−TK

3,2(ω) 1

−TL
3,2(ω) 1

]{
tK,L
2,1 (ω)

tK,L
3,1 (ω)

}
=

{
TK

3,1(ω)

TL
3,1(ω)

}
(19)

resulting in

{
tK,L
2,1 (ω)

tK,L
3,1 (ω)

}
. By considering a third loading condition M , a second pair of “vir-

tual” scalar transmissibilities,

{
tK,M
2,1 (ω)

tK,M
3,1 (ω)

}
, can be derived, e.g.,

[
−TK

3,2(ω) 1

−TM
3,2(ω) 1

]{
tK,M
2,1 (ω)

tK,M
3,1 (ω)

}
=

{
TK

3,1(ω)

TM
3,1(ω)

}
(20)

These “virtual” scalar transmissibilities (that are derived from multivariable transmissibilities)

have to cross each other again in the system poles (because in the system poles the scalar

transmissibilities are uniquely determined by the mode shapes [1], and so, also the “virtual”

scalar transmissibilities have to be unique in the system poles). From these “virtual” scalar

transmissibilities it is possible to derive “virtual” frequency response functions (in analogy with

the scalar transmissibility approach [9])

[H]K,L|K,M(ω) =

[
tK,L
2,1 (ω) tK,M

2,1 (ω)

tK,L
3,1 (ω) tK,M

3,1 (ω)

]−1

(21)

The poles estimated from these “virtual” frequency response functions, [H]K,L|K,M(ω), corre-

spond with the exact system poles. In Figure 3 the stabilization chart obtain from frequency

response functions (classical EMA approach) is compared with the stabilization chart obtain

from “virtual” frequency response functions (transmissibility-based OMA approach). One can

observe that the proposed output-only technique yields stabilization charts that are comparable

with the one derived from FRF measurements. The classical OMA approach could not be ap-

ply because the considered operational forces contain time-varying harmonic components, and

thus, the white noise assumption is severely violated here.

6



ICSV14 • 9–12 July 2007 • Cairns • Australia

0 0.1 0.2 0.3 0.4 0.5
−100

−80

−60

−40

−20

0

20

40

60

80

FREQ. (Hz)

A
M

P
L.

 (
dB

)

Figure 2. Solid line: a frequency response function. Dotted lines: two “virtual” scalar transmissibilities.

Dashed line: a “virtual” frequency response function.
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Figure 3. (a) Left - Stabilization chart obtain from a frequency response function. (b) Right - Stabilization

chart obtain from a “virtual” frequency response function.

7. CONCLUSIONS

It has been shown in this paper that correct system’s poles can be identified starting from mul-

tivariable transmissibility measurements. The theoretical results are verified by means of simu-

lation data.

Classical output-only techniques often require the operational forces to be white noise.

This is not necessary for the proposed transmissibility-based approach. In this paper arbitrary

unknown operational forces are considered that can contain (time-varying) harmonic compo-

nents. The classical approach to deal with such data consists in eliminating these disturbing

harmonic components from the data. Several techniques can be used to do so. However, when

the frequency of these harmonic components varies during the measurements, this is not always

obvious. In this contribution, an alternative approach has be proposed that can handle such

time-varying harmonic disturbances.

A parametric approach is suggested in this paper because less measurements are required

to identify the multivariable transmissibility functions compared to a non-parametric approach.

This parametric approach is generally better numerically conditioned, less measurememts are
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required, and it is possible to compensate for leakage errors by including transient polynomials

in the parametric model [3, 8].
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