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Abstract 
 
Statistical Energy Analysis (SEA) has been used extensively to model the vibro-acoustic 
response of launch vehicles and payloads since the early 1960s. Modern SEA codes contain a 
large library of different subsystems that can accurately account for complicating effects such 
as ribs, curvature, lamination and pressurization. However, applications are sometimes 
encountered where a standard subsystem does not exist for a given type of construction. In 
some instances it is possible to estimate or update the subsystem properties from test or local 
FE models; however, the development of a generic subsystem that can include an arbitrarily 
complicated section is desirable. This paper discusses the development of a general periodic 
subsystem based on the use of periodic structure theory. A finite element model is created of a 
unit cell and analytical expressions are used to obtain the SEA properties of a larger panel 
comprised of a large number of such cells. The approach provides an efficient and accurate 
way to model arbitrarily complex sections in SEA that are difficult to model using traditional 
formulations. For launch vehicle applications the approach is particularly useful for modelling 
advanced laminate and isogrid constructions. 

1. INTRODUCTION 

Due to the high stiffness to mass ratio, periodically ribbed structures are commonly 
encountered in industrial designs and examples can be found in many industries (ship hull, 
ribbed fuselage, honeycomb panels, corrugated train wall, extruded train floor). At high 
frequency, SEA [1] is typically used to describe the dynamic response of such structures, and 
it can sometimes prove difficult to obtain the SEA parameters of two-dimensional complex 
periodic subsystems. Some formulations exist for simple and cross-wise stiffened structures, 
where three types of SEA representations can be adopted [2], depending on the free 
wavelength as compared to the rib spacing. These formulas however hardly apply to more 
complex geometries. 

The goal of the developments presented in this paper is the use the periodic theory applied 
to two-dimensional structural dynamics to derive the input parameters of an SEA model of 
complex two-dimensional periodic structure. The periodic theory of structural vibrations 
initially developed by Mead [3], was studied by many authors including [4,5], and a 
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comprehensive review is given in ref. [6]. There appears to be a large literature on the 
application of the periodic theory to structural dynamics, but its link with SEA has not been 
widely studied although some significant contributions can be found in refs. [2,7-10]. In these 
references, the periodicity is essentially one-dimensional and only the structural vibration is of 
interest. The focus in this study is on general two-dimensional systems, with interest in both 
the structural wave propagation and the coupling with the surrounding acoustic media. 

Since a generic approach is sought, finite elements are combined with the periodic theory 
to allow any geometry to be considered. The periodic theory is quickly reviewed in Section 2. 
The derivation of the SEA parameters intrinsic to a system, i.e. modal density, damping, and 
equivalent mass, is then described in Section 3. In Section 4, the computation of the radiation 
and transmission quantities involved in the coupling with acoustics is reported. The 
application of the approach to an isogrid structure is presented in Section 5. 

2. PERIODIC THEORY OF STRUCTURAL VIBRATION 

The approach to the periodic theory developed in [4] for two-dimensional structures is 
adopted in what follows, and summarized here. Consider a periodic structure made of 
identical elements connected in a regular pattern. A periodic element (or cell) is extracted, and 
the cell’s degrees of freedom are partitioned into interior (I), edge (L, R, B, T) and corner (LB, 
RB, LT, TR) freedoms. The internal degrees of freedom are not connected to other periodic 
cells. The free harmonic vibration is analyzed by specifying a phase lag between the 
displacement degrees of freedom at the left, right, bottom and top edges: 
 ie x

R L
ε−=q q ,    ie y

T B
ε−=q q . (1) 

The corner degrees of freedoms may be similarly expressed in terms of left-bottom corner 
freedoms. The phase constants εx and εy, range from -π to π. 

If the cell is described with finite elements, the degrees of freedom refer to the nodal 
displacement and rotations. In order to apply Eqs. (1), it is then necessary that the nodes 
locations on opposite edges and corners are identical. The complete vector of local degrees of 
freedom of the cell is ordered as q=T[qI  qB  qT  qL  qR  qLB  qRB  qLT  qRT]. The equation of the 
undamped harmonic response of the cell at frequency ω can be written in terms of the 
corresponding mass and stiffness matrices M, K, and the generalized force vector F: {-
ω2M+K}q=F. Equation (1) allows to reduce the description to the vector q’=T[qI  qB  qL  qLB], 
via the relationship q = R q’, where R is a rectangular matrix. Introducing this relation into 
the homogeneous version of the equation of motion yields the equation describing the free 
wave propagation: 
 { }H 2( , ) ( , ) 'x y x yε ε ω ε ε− + =R M K R q 0 , (2) 
where RH denote the complex conjugate transpose of R. Given a set of real values of phase 
constants (εx, εy), solving the eigenvalue problem of Eq. (2) yields the real solutions for ω  
complying with the propagation conditions. Many solutions arise for ω  since i) several waves 
can propagate under a given periodic condition, ii) the periodicity condition is defined modulo 
2π. In what follows, a number of approaches are described for using the periodic 
eigensolutions to compute some SEA parameters. 

3. SUBSYSTEM INTRINSIC PROPERTIES 

In what follows, the multiple eigensolutions of Eq. (2) associated with each pair of phase 
constant are used to derive the averaged modal density, damping and velocity response of the 
periodic structure. In order to find all the periodic eigensolutions, the range to be covered by 
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εx and εy is generally -π<εx<π and 0<εy<π as the eigensolution for the pair (-εx,-εy) equals the 
one for (εx,εy) thanks to the reversal property of the propagation direction. In the case of 
orthotropic structures, additional symmetry allows to further reduce the range to 0<εx<π. For 
each pair of phase constants, many eigensolutions can be extracted. In the current analysis, 
only the solutions with eigenvalue below a given circular frequency (typically the maximum 
frequency of interest time a multiplicative factor) are extracted, similarly with what would be 
done for a standard modal analysis.  

The common assumption in SEA is made that the vibration field is diffuse: waves 
propagating in a frequency band are uncorrelated, and equally contribute to the total energy.   

3.1 Modal density 

The modal density can be computed as the derivative with respect to frequency of the mode 
count (number of mode below a given frequency ω). According to ref. [5], the mode count of 
a periodic structure with Nx×Ny cells is obtained by computing the total area of phase constant 
surfaces lying below the frequency ω: 

 ( ) Nn ω
ω

∂
=

∂
,      with      2

( , )

( )
n x y

x y
x y

n

N N
N d d

ω ε ε ω

ω ε ε
π <

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑ ∫∫ . (3) 

In the integral, the values of εx and εy range from 0 to π. 

3.2 Damping loss factor 

If a structure has a spatially uniform damping, then the damping loss factor to be used in the 
SEA equations is the structural damping. Alternatively, if the structure exhibits an 
inhomogeneous damping distribution like typically encountered in laminates or ribbed panels, 
the damping loss factor becomes dependent of frequency as the structure undergoes different 
deformation field in each frequency band.  

For each wave propagating in a given frequency band, the damping can estimated by 
Pdiss/ω(T+U), where U and T are the strain and kinetic energies associated with the wave 
motion, and Pdiss is the power dissipated. If damping is introduced through the structural 
damping mechanism, the power dissipated is proportional to the strain energy. If the 
components of a structure have different damping levels, the power dissipated is expressed in 
terms of the energies of each component, which are obtained from the corresponding finite 
element mass and stiffness matrices and the wave shape (i.e., the eigenvector ϕn of Eq. (2)). 
Considering the fact that only the resonant motion is of interest, the strain and kinetic energies 
are equal and the wave damping loss factor is written 

 
( )

( )

H H

( )
H H

( )
s n s n

n s
n

n n

η
η ω =

∑ φ R K R φ

φ R KR φ
. (4) 

where Ks is the contribution of the sth component to the total stiffness matrix of the cell. 
Assuming that the waves propagating in a frequency band are uncorrelated, and carry the 
same energy, the damping loss factor of the periodic structure is found by averaging the 
numerator and denominator of Eq. (4) over the waves with propagating frequency within the 
frequency band of interest. 

3.3 Velocity distribution per unit energy 

The primary outputs from an SEA calculation are the powers exchanged between subsystems 
and the subsystems vibrational energy. From the energy, the modulus square velocity can 
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sometimes be post-processed. Typically, for simple structural subsystems with spatially 
homogenous mass density, the spatial averaged of the modulus squared velocity is given by 
<|v|2> = E/M, where M is the mass of the subsystem and E is the energy. 

The value of velocity squared will depart from the spatial average in the vicinity of 
discontinuities such as edges, driving points, or coupling points. For a periodic structure like a 
ribbed plate, one expects the velocity distribution to be very inhomogeneous as the velocity 
response on a rib may be very different from the one on the skin. It is also expected that the 
distribution is frequency dependent because the structure undergoes different deformation in 
each frequency band. 

For the displacement field ϕn associated with a wave, the time-averaged energy of a cell is 
given by H H 2( ) ( { } ) / 2n n nE ω ω= +φ R M K R φ , which can be reduced to two times the mass 
term at the wave propagating frequency. The RMS velocity squared at a point x of the cell is 
ω2(|ϕn,x(x)|2+|ϕn,y(x)|2+|ϕn,z(x)|2)/2, where the translation in the three directions contribute. The 
velocity distribution per unit energy of the nth wave at the wave propagating frequency is then 
given by 

 
( )

22 2
, , ,2

, H H

( ) ( ) ( )
( , ) n x n y n z

RMS n n
n n

v ω
+ +

=
φ x φ x φ x

x
φ R MR φ

. (5) 

By virtue of the diffuse field assumption (energy equipartition and uncorrelation of 
waves), the total energy and modulus square velocity in a frequency band are the sums of the 
contribution of each wave propagating in the band. The RMS velocity squared per unit energy 
is then obtained by averaging the numerator and denominator of Eq. (5) over the waves with 
propagating frequency within the frequency band of interest. 

4. COUPLING WITH ACOUSTICS 

In this section, the acoustic radiation and transmission properties of a periodic structure are 
computed from the phase constant surfaces, solutions of Eq. (2). In all cases, the calculation 
makes use of the spatial Fourier transform of some vibration fields, and this is introduced in 
the first subsection below. 

4.1 Wavenumber transform and periodicity 

Consider the finite periodic structure made of Nx×Ny cells of dimensions lx×ly. For any 
displacement field with periodic properties related to the phase constants (εx,εy), the 
displacement field u  of the cell at (nx,ny) cells from the reference cell is written in terms of 
the reference displacement field u as [9]: exp( )x x y yu u in inε ε= − − . If the displacement is 
assumed to be zero outside of the finite periodic structure (rigid baffle), the spatial Fourier 
transform of the field is written as a surface integral confined to the finite area AN of the 
structure. Using the above form of the displacement field, the integral over the whole 
structure area can be split into NxNy integrals over the cells area A, and the integration 
variables changed from global to local. The modulus square of the Fourier transform is then 
obtained in terms of the Fourier transform of the field over the reference cell by 

 2 2| ( , ) | | ( , ) | ( , , ) ( , , )x y x y x x x x y y y yU k k U k k N k l N k lκ ε κ ε=    with   ( )1 cos ( )
( , , )

1 cos( )
N kl

N kl
kl

ε
κ ε

ε
− +

=
− +

. (6) 

The function κ describes the effect of the finite size and of the periodicity on the wavenumber 
content of the unit cell’s vibration field. Its peaks at kl=-ε+2πn with n an integer, become 
more pronounced as N increases. 
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4.2 Acoustic radiation 

This section describes the computation of the averaged radiation efficiency used in SEA to 
describe the coupling of structures with surrounding fluids. Consider a finite periodic 
structure surrounded by a semi-infinite fluid along the surface area AN. The structure is 
assumed to be baffled by an infinite rigid plan. 

The motion of a unit periodic cell due to a wave is described by the eigenvector ϕn 
solution of Eq. (2). The out-of-plane degrees of freedom are extracted to form the vector ϕn. 
Let nϕ  denote the corresponding out-of-plane displacement field of the complete periodic 
structure made of Nx×Ny cells. The radiation properties can be obtained from the self-radiation 
dynamic stiffness of the wave deformation of the complete surface looking into the fluid, 
  *

, ( , ) ( , )
N

rad n n n
A

D X Y p X Y dXdYϕ= ∫∫ , (7) 

where ( , )np x y  is the pressure field on the structure surface, due to the nth wave of unit 
amplitude. Thanks to the rigid baffle condition, the finite area integral can be extended to 
infinity, allowing the use of Fourier transform. The fluid wave dynamic stiffness relates the 
displacement wavenumber transform to the pressure wavenumber transforms by 

( , ) ( , ) ( , )n x y x y n x yP k k D k k k kφ= . If the radiating area is bare (no noise control treatment), then 
2 2 2 2 1/ 2( , , ) ( )x y x yD k k i k k kω ρω −= − − , where k=ω/c is the acoustic wavenumber, and ρ and c 

are the fluid density and sound velocity. The effect of a noise control treatment could be 
included in two ways in this analysis: i) the trim can be described by finite elements and thus 
be part of the wave eigensolution, the radiating surface being the outer surface of the trim, or 
ii) the trim can be included in the wave dynamic stiffness D(kx,ky) by using available 
wavenumber descriptions of the multilayered trims [11]. 

Applying the inverse Fourier transform to the pressure wavenumber transform, 
substituting the resulting pressure field into Eq. (7), and inverting the summation order yields 
the radiation dynamic stiffness of the wave 

 2
, 2

1 | ( , ) | ( , )
4rad n n x y x y x yD k k D k k dk dkφ
π

∞ ∞

−∞ −∞

= ∫ ∫ , (8) 

where only the wave radiation stiffness and the wavenumber transform of the wave field over 
the whole structure are involved.  

The use of the Fourier transform makes the current computation strictly valid for flat 
radiating surfaces. For curved structures, the assumption is made that the acoustic impedance 
of the plane surface is a good approximation if the curvature is not too small compared to the 
acoustic wavelength. The structure is unwrapped to its flat equivalent by conserving the area. 

The radiation efficiency of the wave is defined in terms of the time-averaged acoustic 
power radiated by the structure with the wave deformation field and the averaged mean 
square velocity of the structure undergoing the wave motion: 2

, , /( | | )rad n rad n ncA vσ ρ= Π < > . 
The power radiated can be derived from Eq. (8) by , ,Re{ }/ 2rad n rad ni DωΠ = , and the mean 

square velocity is 2 2 2| | | ( , ) | / 2
N

n n NA
v X Y dXdY Aω ϕ< >= ∫∫ . Using Eq. (6) in conjunction with 

Eq. (8), the radiation efficiency of a wave propagating along a finite Nx×Ny periodic structure 
can be obtained from the Fourier transform of the wave displacement field on the reference 
cell. 

By virtue of the diffuse field assumption (energy equipartition and uncorrelation of 
waves), the radiation efficiency used in SEA can be obtained by averaging the radiated power 
and mean square velocity over the waves. 
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4.3 Acoustic transmission 

In this section, the acoustic transmission loss of a periodic structure is derived. A diffuse 
acoustic field is applied on one side of the structure, and the power radiated on the other side 
is computed. The diffuse acoustic field can be described i) as a set of uncorrelated acoustic 
plane waves with equal intensity, and incident on the structure at all angles; ii) using a recent 
diffuse-field reciprocity result [12] giving the blocked pressure from the radiation impedance 
computed by Eq. (8). Only the first approach is demonstrated here. 

Consider a structure with two faces (not necessarily coincident) with one face excited by a 
diffuse acoustic field. For a given incidence defined by the angles θ and φ in spherical 
coordinates, the incident pressure on the face of the structure is p(x,y)=p0 exp(-jkpxx-jkpyy) 
where kp=k sinθ is the acoustic wavenumber trace on the structure and kpx=kpsinφ and 
kpy=kpcosφ. Since both the loading pressure and the structure are periodic, the dynamic 
response is spatially periodic and can be computed using Eq. (2) with a forcing term. The 
force vector on the right-hand side of the equation is the projection of the blocked pressure 
(two times p) onto the FE shape functions associated with the out-of-plane degree of freedom 
at each node. Given the frequency ω and the real wavenumbers kpx and kpy, solving the 
equation yields the response of the degrees of freedom of a unit cell to the pressure field. 

From the response of the periodic cell, the power radiated can be estimated by substituting 
in Eq. (8) the wavenumber transform of the out-of-plane displacement field of the cell’s 
response (this accounts for the finite-size effect of the structure). The power transmission 
coefficient for a given incidence is the ratio of radiated and incident powers. The diffuse-field 
transmission coefficient is obtained by averaging over all incidences: 

 
2

0

0 0 0

| |( , ) sin cos sin
2

lim lim

rad N
pd d A d

c

θ θπ

τ θ φ θ θ φ π θ θ θ
ρ

= Π∫ ∫ ∫ . (9) 

For the diffuse-field transmission coefficient, the limit incidence is θlim = π/2, whereas for the 
field-incidence often used in practice, the angular range is confined below θlim = 78o. 

5. APPLICATION CASE: ISOGRID STRUCTURE 

The formulae derived above are used to characterize the SEA properties of an isogrid panel. A 
picture of the panel is shown in Fig. 1, together with the FE mesh of a single periodic cell 
comprising CQUAD and CTRIA elements and 690 nodes. At this stage, isotropic aluminium 
has been considered for simplicity, and ribs and skin have different thicknesses (different 
colors in Fig. 1). The ribs have 0.1% damping and the skin 2%. 

 

    
Fig. 1:  Left: picture of an isogrid panel. Right: finite element meshes of a single cell. 

 
For a panel made of 12×12 cells, the damping loss factor, number of modes in frequency 

band, radiation efficiency and transmission loss were computed using the development above. 
Results are shown in Fig. 2. For the damping, the ribs have an impact at low frequency 
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because the motion if fairly uniform. When the frequency increases, the motion tends to 
localise and the more energetic skin region dominates the damping. The modes in band show 
a band with very few modes (at 250 Hz), which is typical of periodic behaviour (this is almost 
a “stop band”). The transmission is seen to be dominated by non-resonant path over most of 
the frequency range. The radiation efficiency was computed with and without a noise control 
treatment made of a soft wool layer and a heavy rubber layer. The first resonance of the layup 
is 300 Hz, and this is where the effect on radiation starts to be significant. 

   

 
Fig. 2:  Some SEA properties of the isogrid panel, as computed using the periodic formulation. 

 
The distribution of RMS velocity in the third octave band centred at 100 Hz is shown in Fig. 
3, where it can be seen that the skin responds more than the ribs. 

 

 
Fig. 3:  Distribution of RMS velocity per unit energy of the structure at 100 Hz. 

6. CONCLUSIONS 

By combining finite element and periodic theory, an approach has been developed to compute 
some input parameters to the SEA description of two-dimensional periodic structures. Starting 
from the finite element description of a single periodic cell, some phase constant surfaces are 
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computed by specifying some periodic boundary conditions and solving an eigensolution 
problem. The eigensolutions are then used to derive some intrinsic properties of the structure 
as well as properties describing its coupling with acoustics. 

The subsystem intrinsic properties that were derived are the modal density, the damping 
loss factor (from the distribution of damping within the periodic cell), and the distribution of 
modulus square velocity per unit energy. Regarding the coupling with acoustics, the acoustic 
radiation and transmission have been derived using the wavenumber descriptions of the 
vibration fields. The finite-size effect is accounted for. The contribution of resonant and non 
resonant modes in the transmission can be computed. Noise control treatment can be added by 
adequately changing the wave radiation impedance. 

Recently, the point and line impedances of a periodic structure have been derived, 
allowing the calculation of the coupling loss factors with connected structural subsystems. 
Also, the power input due to point forces, diffuse acoustic field and turbulent boundary layer 
have been derived using the wavenumber description presented here. The effect of 
pressurization has been introduced through the use of “differential stiffness matrix” in the FE 
description of the cell. 

ACKNOWLEDGMENTS 

This work was sponsored by the Air Force Research Laboratory, Space Vehicles Directorate, 
Kirtland AFB, NM, USA under SBIR phase II contract F29601-02-C-0109 and by the NASA 
Langley Research Center, Structural Acoustics Branch, Hampton VI, USA under SBIR phase 
II contract NNL06AA04C. 

REFERENCES 

[1] R.J. LYON, R.G. DEJONG  1995  Theory and Application of Statistical Energy Analysis, 2nd 
edition. Butterworth-Heinemann. 

[2] R.S. LANGLEY, J.R.D. SMITH, F.J. FAHY  1997  J. Sound Vib. 208, 407-426. Statistical energy 
analysis of periodically stiffened damped plate structures. 

[3] D.J. MEAD  1973  J. Sound Vib. 27, 235-260. A general theory of harmonic wave propagation in 
linear periodic systems with multiple coupling. 

[4] R.S. LANGLEY  1993  J. Sound Vib. 167, 377-381. A note on the force boundary conditions for 
two-dimensional periodic structures with corner freedoms. 

[5] R.S. LANGLEY  1994  J. Sound Vib. 172, 491-511. On the modal density and energy flow 
characteristics of periodic structures. 

[6] D.J. MEAD  1996  J. Sound Vib. 190, 495-525. Wave propagation in continuous periodic 
structures: research contributions from Southampton, 1964–1995. 

[7] A.J. KEANE, W.G. PRICE  1989  Proceedings of the Royal Society of London A423, 331-360. 
Statistical energy analysis of periodic structures. 

[8] Y.K. TSO, C.H. HANSEN  1998  J. Sound Vib. 215, 63-79. The transmission of vibration through 
a coupled periodic structure. 

[9] R.S. LANGLEY  1996  J. Sound Vib. 197, 447-469. The response of two-dimensional periodic 
structures to point harmonic loading. 

[10] S. FINNVEDEN  2004  J. Sound Vib. 273, 51-75. Evaluation of modal density and group velocity 
by a finite element method. 

[11] B. BROUARD, D. LAFARGE, J.F. ALLARD  1995  J. Sound Vib. 183, 129-142. A general method 
of modelling sound propagation in layered media. 

[12] P.J. SHORTER, R.S. LANGLEY  2004  J. Acoust. Soc. Am. 117, 85-95. On the reciprocity 
relationship between direct field radiation and diffuse reverberant loading. 


