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Abstract 

 

This paper presents a technique for separating vibration signals generated by gears and rolling 

element bearings in rotating machinery for the detection of bearing faults. One of the most 

commonly used methods for detection of rolling element bearing fault is envelope analysis of 

the vibration signal, which often relies on the identification of structural resonances. 

However, envelope analysis can often be difficult when the measured vibration signal is 

dominated by gear mesh harmonics. The technique proposed in this paper uses a resampling 

process synchronised with respect to the shaft rotation and a multi-band filtering process that 

removes all shaft synchronous vibration components. The resulting non-synchronous signal is 

expected to be dominated by bearing vibration, to which an envelope analysis across the 

whole bandwidth should be sufficient for the extraction of bearing fault characteristic 

information. An application of this technique to test data shows that it is effective in detecting 

a small seeded raceway fault. In comparison to the commonly used envelope technique, the 

proposed method does not rely on the identification of prominent resonance peaks that are 

only excited by the faulty bearing vibration. The proposed technique should be particularly 

useful in cases where bearing excited resonances are not easily identifiable or they are 

corrupted by stronger gear mesh harmonics. It should be straightforward to implement the 

technique into any existing fault detection system that has a shaft speed signal. 

1. INTRODUCTION 

The envelope spectral technique [1][2], also referred to as high frequency resonance analysis, 

is widely accepted as a powerful tool in diagnosing faults in rolling element bearings. The 

envelope spectrum reveals outer race faults most effectively provided noise contamination is 

low. With the detection of inner race and rolling element faults, the intertwinement between 

the harmonics of fault frequency and their accompanying sidebands can make this technique 

difficult to use, especially in the presence of other vibration sources. The autocorrelation 

analysis of envelope signals [3] can resolve the above mentioned intertwinement problem. 

The envelope autocorrelation function exhibits a series of lag impulses corresponding to 

various integer-multiples of the characteristic fault periods. The envelope autocorrelation 
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function presents a superior detectability to the envelope spectral analysis for the diagnosis of 

inner race and roller/ball faults. This superiority is particularly obvious if the signal is subject 

to large noise disturbance. However, the use of this technique may be limited by the threshold 

effect [4][5] of the envelope detection if a non-linear rectification (full-wave or square-law) 

process is employed. 

 

Both envelope spectral and envelope autocorrelation techniques rely heavily on the 

identification of high frequency structural resonances which modulate the impulses generated 

by bearing elements striking the faults. It is often difficult to carry out such analyses when 

structural resonances are not readily identifiable or they are located within the bandwidth of 

gear mesh harmonics which are larger in amplitude than the bearing signals. A typical 

example is bearing fault detection of helicopter gearboxes, where the gear mesh vibration 

extends into the high frequency range and interacts with bearing fault related vibrations. In 

simple cases where gear and bearing signals are purely additive, it is probably not very 

difficult to separate them. But the gear bearing interactions are most likely to be multiplicative 

because gear mesh vibration has to pass through bearings to vibration sensors.  

 

Antoni and Randall have developed several techniques [6][7][8][9] in separating gear 

and bearing signals. The spectral kurtosis (SK) technique [6][7] employs the kurtosis in time-

frequency plane to search for an optimal demodulation band for envelope analysis. The 4
th

 

order statistic, kurtosis, is used to detect transient vibration, which differs from the 2
nd

 order 

statistic used in short time Fourier transform or spectrograms. The self-adaptive noise 

cancellation (SANC) principle [8] can be used in separating additive gear and bearing signals. 

The technique presented in [9] is based on recognizing gear signals as being purely periodic, 

whereas bearing signals being random with approximately 2
nd

 order cyclostationarity (i.e., a 

periodic bivariate autocorrelation function). 

 

In this paper, we propose a technique of separating vibration signals generated by gears 

and rolling element bearings for bearing fault detection. The technique uses a resampling 

process in the angle domain and removes all shaft synchronous components (SSC) including 

gear mesh harmonics in the order (i.e., normalised frequency) domain. The residual signal is 

then expected to expose the non-synchronous bearing vibration, which is usually much 

smaller than gear mesh vibration. When the mixture between SSC and bearing signal is 

additive, an envelope spectrum of the residual signal across the whole bandwidth should be 

sufficient to extract bearing fault characteristic information. If the interaction between SSC 

and bearing signal is multiplicative, the SSC’s will still show up in the residual envelope 

spectrum as modulation sidebands to bearing components. In this case, the SSC’s may need to 

be removed from the residual envelope spectrum to further expose the bearing fault frequency 

and its harmonics. An application of this technique to test data shows that it is effective in 

detecting a small seeded outer race fault. In comparison to conventional envelope techniques, 

the proposed method does not rely on the identification of prominent resonance peaks that are 

excited by the faulty bearing vibration. The proposed technique should be particularly useful 

in cases where bearing excited resonances are not easily identifiable or they are corrupted by 

stronger gear mesh harmonics. It should be straightforward to implement the technique into 

any existing fault detection system that has a shaft speed signal.  

2. MIXTURE OF BEARING AND GEAR SIGNALS 

The vibration signal generated by a bearing fault can be described by combining Braun's [10] 

and McFadden’s [11] models. The vibration induced by shaft rotation & gear mesh is denoted 
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by s(t), and the vibration by a bearing fault is b(t),  
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where j is the shaft order number, Aj and φj are amplitude and phase, respectively, at j
th

 order 

and ωs is the shaft rotation frequency (in rad/sec). In the bearing signal shown in Eq. 2, T is 

the characteristic fault period (i.e., the reciprocal of the fault frequency 2π /ω), and ωn the 

structure resonant frequency exited by bearing fault. α denotes the time constant for the 

exponential decay of the resonant oscillations, which is determined by system damping, and 

U(t) is a unit step function. Bk represents the peak amplitude of k
th

 impulse produced by the 

bearing fault. When the bearing fault is small, the amplitude of b(t) can be much less (about 

100 times smaller in the example shown later in the paper) than that of s(t). The shaft 

synchronous signal s(t) and bearing fault induced signal b(t) can be mixed together in both 

additive and multiplicative (by a factor of σ = 0~1) forms, resulting a signal  

 

[ ] )()(1)()()()()()( tbtststbtstbtstx ⋅++=⋅++= σσ      (3) 

 

In practice, the actual measured signal will be the convolution of signal x(t) with the 

system’s transmission path function h(t) plus measurement noise. Hence, the measured 

vibration signal is usually expressed by 

 

 )()()()( tnthtxty +⊗= ,          (4) 

 

where ⊗ denotes the convolution operation, and n(t) is the measurement noise which is 

assumed random. For bearing fault detection we need to extract b(t) from y(t), or from x(t) if 

system and noise effects are neglected for mathematical simplicity. The conventional, and 

usually very effective, approach is envelope analysis, where resonance frequency ωn is readily 

identifiable and it is outside, and normally much higher than (which is why it is often referred 

to as high frequency resonance analysis) the signal bandwidth associated with s(t) so that b(t) 

and s(t) shown in Eq. (3) are separated by their bandwidths.  

 

In cases where ωn is not easily identifiable and/or it is within the signal bandwidth of 

s(t), which is often true for complex machinery such as helicopter gearboxes, the envelope 

analysis will not be effective because s(t) is usually much bigger than b(t) when they are seen 

in the bandwidth of s(t). This paper presents a technique where b(t) and s(t) can be separated 

based on the fact that s(t) is synchronous but b(t) is non-synchronous to shaft rotation, i.e., 

frequency content of s(t) is on integer shaft orders  (1, 2, 3, …) whereas b(t) is on non-integer 

orders (e.g., 4.89, 9.78, …). Using this technique, b(t) and s(t) may be readily separable if 

factor σ in Eq. (3) is zero or negligible, i.e., b(t) and s(t) are purely additive. For non-zero σ, 

b(t) and s(t) become both additive and multiplicative, then the bearing signal b(t) may be 

extracted in three steps:  

• Removing additive s(t) from the spectrum of angle domain resampled x(t);  

• Calculating envelope spectrum of the residual signal [1+ σ ⋅s(t)]b(t) where bearing 

signal b(t) can be regarded here as the ‘carrier’; 

• Removing modulation sidebands around DC and harmonics of the fault characteristic 
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frequency ω = 2π / T in the residual envelope spectrum.  

3. TEST DATA 

The data were acquired on a bearing test rig with a pair of undamaged gears at 1:1 ratio in the 

University of New South Wales. An acceleration signal and a tachometer signal were used for 

the analysis of this paper. The test bearings were of type Koyo 1250 (double row self-aligning 

ball bearing). The tests were conducted using one good bearing and one faulty bearing with a 

localized outer race fault. The gear/bearing shaft speed was 10Hz, and the gear torque load 

was 100Nm. The following table shows other relevant parameters about the rig and the test.  

 

Shaft 

speed 

Gear 

tooth 

number 

Data 

sampling 

rate 

Ball 

diameter 

d 

Pitch 

circle 

diameter 

D 

No. of 

balls per 

row 

N 

Contact 

angle  

φ 

Outer 

race 

fault 

freq. 

Gear 

mesh 

freq. 

10Hz 32:32 48kHz 7.12mm 38.5mm 12 0º 48.9Hz 320Hz 
Note: Koyo 1250 has an outer race diameter of 44.85mm & an inner race diameter of 32.17mm. 

4. ENVELOPE ANALYSIS OF TEST DATA 

Fig. 1 shows the good bearing raw vibration signal and its spectrum with a FFT length of 

4096 samples. We can see that the raw spectrum is dominated by the gear mesh frequency at 

320Hz and its harmonics. The spectral power decays by more than 50dB (from the peak at 

320Hz) at about 7kHz before a structural resonance at about 7.5kHz. Fig. 2 shows the results 

of standard envelope analysis using highpass filters from 5kHz and 10kHz. As can be seen, 

both envelope spectra are showing the pattern of gear mesh harmonics modulated by the shaft 

frequency, i.e., 320Hz and its harmonics are surrounded by sidebands of 10Hz spacing. 
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Figure 1. Good bearing raw signal & spectrum (NFFT=4096) 

 

Fig. 3 is the raw vibration signal and its spectrum for the faulty bearing with a localized 

outer race fault (ORF). Because the ORF was very small and the dominance of gear signal, it 

is normal for the bearing fault characteristic frequency to be undetectable in the raw spectrum. 

However, it should be detectable in the envelope spectrum provided the demodulation band is 
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appropriately selected. When comparing the raw spectra of the good bearing case with that of 

the faulty bearing case, we find that a resonant hump at 5.6kHz stands up in the faulty bearing 

spectrum and we also find some differences at the frequency band above 8kHz between the 

two spectra. Consequently, we conducted envelope analyses on the faulty bearing signal using 

5kHz and 10kHz highpass filtering before demodulation. The results are shown in Fig. 4. 
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Figure 2. Good bearing envelope spectra (5kHz & 10kHz highpass) 
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Figure 3. ORF raw signal & spectrum (NFFT=4096) 

 

In Fig.4, we find that the 5kHz highpass envelope spectrum is still dominated by the 

harmonics of shaft frequency (10Hz), which prevents the ORF frequencies (48.9Hz and its 

harmonics) from being detectable. Referring back to Eq. (3), this basically means that s(t) is 

still much bigger than b(t) in the frequency range of 5kHz and above. In contrast, the 10kHz 

highpassed spectrum brings up the ORF harmonics perfectly, which allows detection of the 

ORF. This demonstrates that it is crucial to select the right demodulation band for envelope 

analysis. In the following section, we will employ the 10kHz lowpassed signal, where s(t) is 

much bigger than b(t), to demonstrate the capability of the proposed technique. 
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Figure 4. ORF envelope spectra (5kHz & 10kHz highpass) with fo=48.9Hz revealed 

5. ANGLE DOMAIN RESAMPLING AND SIGNAL SEPARATION 

As mentioned in previous sections, the fundamental difference between gear and bearing 

vibration signals is that gear signal is synchronous to the rotation of gear/bearing shaft but the 

bearing signal is not. Therefore, it is possible to separate gear and bearing signals through an 

angle domain resampling of the raw vibration signal over multiple revolutions of the 

gear/bearing shaft. A single Fourier transform with large FFT length is then applied to the 

entire resampled signal. The amplitude spectrum can be plotted in the order (normalised 

frequency) domain. In the amplitude spectrum, the synchronous components are expected to 

be located at integer multiples of the shaft order and non-synchronous ones are at non-integer 

multiples of the shaft order; hence the gear and bearing components can be separated by order 

domain filtering. 

 

When the bearing fault is small, the amplitude of b(t) can be much less (about -20dB in 

the example shown here) than that of s(t). For the detection of bearing faults, the synchronous 

components can be set to zero in the order domain because the angle domain resampled 

signals are purely periodic. The residual signal should only contain non-synchronous content, 

such as those produced by localized bearing faults. A demodulation (or enveloping) process 

across the broad band, if no particular band is known to be associated with bearing fault 

excitation, should expose the bearing fault characteristic frequencies and their harmonics.  

 

However, in case of multiplicative mixture of bearing and gear signals as shown in Eq. 

(3) with a non-zero σ, the shaft frequency harmonics can shown up as modulation sidebands 

at DC and harmonics of bearing fault frequencies in the residual envelope spectrum. This is 

because the force fluctuation caused by gear mesh, unbalance and misalignment etc. is passed 

onto bearing load through their common shaft, which in turn causes a modulation of the 

bearing signal by the SSC. It is important to point out that, in the spectrum of the resampled 

signal, the modulating SSC’s around bearing fault related harmonics are located at non-

integer multiples of the shaft order, e.g., (k×ω  ± j×ωs) where ω is the bearing fault 

characteristic frequency and ωs the shaft frequency and ω/ωs is non-integer. A demodulation 

or enveloping process is necessary to turn the modulating SSC’s into baseband components 

around DC (integer multiple of the shaft order) and around bearing fault related harmonics 

(still non-integer multiple), see Fig. 5(a). The following steps outline the process for the 
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proposed technique: 

• Resample raw signal (data length of multiple shaft revolutions to allow sufficient 

resolution) in angle domain with respect to shaft speed signal; 

• Fourier transform of the resampled signal; 

• Remove spectral components corresponding to the integer multiples of the shaft order 

(the normalised frequency) in the order domain; 

• Inverse Fourier transform the remaining to get residual signal; 

• Demodulate the residual signal; 

• Fourier transform again to obtain residual envelope (RE) spectrum; 

• Remove shaft harmonics (at integer shaft orders) in RE spectrum to obtain the residual 

envelope residual (RER) spectrum; 

• Remove, if necessary, the sidebands around bearing fault frequency and its harmonics. 
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Figure 5. ORF bearing residual envelope (RE) spectrum & residual envelope residual (RER) spectrum 

with 10kHz lowpass to the original signal 
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Figure 6. ORF bearing conventional envelope spectrum & residual envelope residual (RER) spectrum 

with 6kHz highpass demodulation filters 
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Fig. 5 shows the RE and RER spectra for the test with an ORF bearing. Before 

conducting angle domain resampling, the raw signal, covering 20 revolutions of the shaft, was 

lowpass filtered at 10kHz which is the band that conventional envelop analysis is unable to 

detect the ORF (see Fig. 4a). As seen in Fig. 5(a), the ORF harmonics (48.9Hz …) are 

revealed in the RE spectrum but they are still dwarfed by the shaft harmonics (10Hz …). By 

removing the shaft harmonics we make the ORF harmonics clearer in the RER spectrum. Fig. 

6 presents the result of a comparison between the conventional envelope spectrum and the 

RER spectrum in a frequency range (i.e., > 6kHz) where SSC’s are still dominating. It is 

evident that the RER spectrum displays the ORF characteristic frequency and its harmonics 

much more clearly. For the good bearing signal shown in Fig. 1, the RER spectrum showed 

no evidence of ORF harmonics. 

6. CONCLUSIONS 

This paper has presented a technique of separating vibration signals generated by gears and 

rolling element bearings for bearing fault detection. The technique supplements the 

commonly used envelope analysis techniques for situations where bearing excited resonances 

are not easily identifiable in the presence of much stronger gear mesh harmonics. It is very 

effective for the simple additive and quite applicable for the complex multiplicative 

interactions between bearing signals and shaft synchronous components (SSC) including gear 

mesh harmonics. Due to its straightforward process, the proposed technique may be 

implemented without great difficulty into any existing fault detection system that has a shaft 

speed reference.  

 

(The author would like to thank Prof. R.B. Randall of UNSW  for providing the test data for 

this work.) 
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