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Abstract 
 
Floating-slab tracks are known as effective means for isolating vibration from underground 
railway tunnels. Slabs are supported on tunnels via rubber bearings or steel springs. The slab 
can be continuous or discontinuous. Continuous slab is cast in-situ and discontinuous slab is 
constructed in discrete pre-cast sections. A track with discontinuous slab exhibits more 
resonances due to constructive interference of waves that reflect at both ends of the slab. 
This paper presents a new method for modelling floating-slab tracks with discontinuous slabs 
in underground railway tunnels. The track is subjected to a harmonic moving load. The model 
consists of two sub-models. The first is an infinite track with periodic double-beam unit 
formulated as a periodic infinite structure. The second is modelled with a new version of the 
Pipe-in-Pipe (PiP) model that accounts for a tunnel wall embedded in a half-space. The two 
sub-models are coupled by writing the force transmitted from the track to the tunnel as a 
continuous function using Fourier series representation and satisfying the displacement 
compatibility. 
The displacements at the free surface are calculated for a track with discontinuous slab and 
compared with those of a track with continuous slab. The results confirm that the far-field 
vibration can significantly be increased due to resonance frequencies of slab for tracks with 
discontinuous slabs.  

1. INTRODUCTION 

Vibration from underground railways can be reduced by using floating-slab tracks. The track 
is isolated from the track bed via rubber bearings or steel springs. The slab can be cast in-situ 
leading to a track with a continuous slab. It may also be constructed in discrete pre-cast 
sections leading to a track with a discontinuous slab. The latter track has more resonances 
than the former due to constructive interference of bending waves which reflects at free ends 
of slab.  
Floating-slab tracks with discontinuous slabs on rigid foundations are modelled by Hussein 
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and Hunt [1,2]. These models are useful in understanding the dynamic effect of slab 
discontinuity on vibration induced at the track bed. However, a comprehensive model of the 
tunnel and the soil is important to account for the track-tunnel interaction and to provide the 
necessary transfer functions for the calculations of the far-field response due to a load applied 
on the track.  
In this paper, a model of a floating-slab track with discontinuous slab resting on a tunnel 
embedded in a half-space is presented. The Euler-Bernoulli beam theory is used to account for 
the flexural behaviour of the track. The periodic-infinite structure theory is employed to 
account for periodicity of the model. The tunnel and the ground is modelled using the new 
version of the Pipe-in-Pipe (PiP) model [3,4] which accounts accurately for a circular tunnel 
embedded in a half-space.      
This paper is organised in the following sections. Section 2 presents the model formulation. 
Section 3 presents results of the model where the response in the free-surface due to a 
harmonic load moving on the track with a constant velocity is shown and compared to those 
resulting from a track with a continuous slab.    

2. FORMULATION OF THE MODEL 

The model used in this paper is shown in Figure 1. The two rails of the track are modelled as a 
single Euler-Bernoulli beam which is supported on a slab via continuous layer of springs to 
account for railpads. The slab is modelled as Euler-Bernoulli beam supported on the tunnel 
invert via another layer of springs to account for slab bearings. The tunnel and soil are 
formulated using the PiP model [3-6]. The PiP model accounts for a tunnel embedded in a 
half-space by using the elastic continuum theory for a tunnel in a full-space along with 
Green’s functions for an elastic half-space.  
For the model shown in Figure 1, the governing equations of the unit of the track in the range 
( ), in the frequency domain, can be written in the form [1] Lx ≤≤0
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Figure 1: A model of a floating-slab track with discontinuous slab subjected to a harmonic load 
moving with a constant velocity along the track. (a) End view. (b) Side view.  
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where 1

~y , 2
~y  and 3

~y  are the displacement of the rails, the slab, the track bed, i.e. the tunnel 
respectively. R~  is the induced force between the track and the tunnel. All the previous 
quantities are functions of space  and frequency x ω .  and  are the bending stiffness 
of the rails (for two rails) and the slab respectively.  and  are the mass per unit length of 
the rails (for two rails) and the slab respectively.  and  are the stiffness per unit length of 
the railpads (for two rails) and the slab bearings respectively. 

1EI 2EI

1m 2m

1k 2k
ϖ  and  are the excitation 

frequency and the velocity of the moving load.      
v

According to the periodic-structure theory, the force on the tunnel invert satisfies the 
following relationship 
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Equation 6 shows that R~  is a periodic function of the second kind which can be 

transformed into an equation with periodicity of the first kind using the following substitution 
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From equations 6 and 7, one can write 
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Equation 8 shows that Q  is a periodic function of the first kind. This equation can be 

written as a summation of Fourier series, see [7] for example. The resulting expression can be 
substituted in equation 7 to get 
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Equation 9 can be used to write the displacement of the track bed as  
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where ),(~ ωξtH  is the Frequency Response Function (FRF) of the tunnel, i.e. the 
displacement of the tunnel due to a unit excitation on the tunnel in the wavenumber-frequency 
domain. To calculate the displacement at any point in the soil, the FRF on the right hand side 
of equation 10 is replaced by the transfer function between that point and the tunnel.  

The purpose of the rest of analysis is to determine the coefficients )(ωnb  for given 
parameters of the track and for a prescribed ϖ  and . Equations 1 and 2 can be written in the 
following form (using equation 9 to substitute for 

v
R~ ) 
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where Txyxyxy )],(~),,(~[),(~
21 ωωω = . The solution of equation 11 is written as a superposition 

of solutions resulting from each term of the right hand side expression. Note that the solution 
due to the first term in the right hand side expression of equation 11 is the homogeneous 
solution of the differential equations. The complete solution reads 
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where  and ja jY~  are the coefficients and the eigenvectors of the homogeneous solution. U~  
and   are the vectors of coefficients of the particular solutions. Equation 12 is defined in the 
range ( ). However 

nV
Lx ≤≤0 ),(~ ωxy  satisfies the following relationship 
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Due to the periodicity of the second kind in equation 13, equation 12 can be written for all 
values of , even outside the range (x Lx ≤≤0 ), using Fourier series representation as 
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Considering only a limited number of terms ( maxmax nnn ≤≤− ), the previous equation 
has  unknown;  and .  92 max +n ),,...,,...,,(

maxmaxmaxmax 101 nnnn bbbbb −+−− ),...,,( 821 aaa
Substituting  2

~y  and 3
~y  from equations 14 and 10 respectively into equation 3 and 
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equating the resulting expression of R~  to the one in equation 9 gives 
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The last equation along with the eight boundary conditions represent the necessary 
 equations to calculate all the unknowns  and .  Using these values, equation 

10 is employed to calculate the response at any position in the soil by using the suitable FRF 
from the PiP model as discussed before. The displacements in the space-frequency domain are 
transformed to the space-time domain using the Discrete Fourier transform.  

92 max +n nb ja

 

4. SAMPLE RESULTS 

In this section the displacement results at the free-surface due to a harmonic force moving on 
the track with a constant velocity  = 40 km/hr are presented. The following parameters are 
used for the analysis. For the track, =10 MPa.m

v
1EI 4, = 100 kg/m, =1430 MPa.m1m 2EI 4, 

=3500 kg/m, =20 MN/m/m (with hysteretic loss factor of 2m 1k 1kη =0.3), =5 MN/m/m 
(with hysteretic loss factor of 

2k

2kη =0.5). The track has a discontinuous slab of length L=6m. 
For the tunnel, external radius = 3.0 m, internal radius = 2.75 m, compression wave 
velocity = 5189 m/s, shear wave velocity = 2774 m/s, density 

2r 1r

1c 2c ρ = 2500 kg/m3 (with 
hysteretic loss factor of η =0.015 associated with both pressure and shear wave velocities). 
The distance between the tunnel centre and the free surface is 20m. For the soil, compression 
wave velocity = 944 m/s, shear wave velocity = 309 m/s, density 1c 2c ρ = 2000 kg/m3 (with 
hysteretic loss factor of η =0.03 associated with both pressure and shear wave velocities).  

The displacements of the track with discontinuous slab are compared with those of a track 
with a continuous slab. The latter results are calculated using a continuous model of a track-
tunnel-soil formulated in the wavenumber-frequency domain and results are then transformed 
to the space-time domain.   

Figure 2 shows the displacements in the free-surface at (x=0, y=0, z=0) in the frequency 
domain due to a harmonic load with excitation frequency 10Hz and moving on a floating slab 
track with continuous and discontinuous slabs (see Figure 1 for information about the 
coordinate systems). It can be seen that the displacements are large at frequencies close to the 
excitation frequency, i.e. 10 Hz. Around this frequency, both tracks give the same 
displacements and the difference between the two curves becomes large at frequencies away 
from the excitation frequency.    

It can also be observed that the displacements for a track with a continuous slab decay 
more quickly away from the excitation frequency compared with those for a track with a 
discontinuous slab. Figure 3 shows the displacements in the free-surface at the same point 
(x=0, y=0, z=0) in the frequency domain due to a harmonic load with excitation frequency 
100Hz and moving on a floating slab track with continuous and discontinuous slabs. The 
frequency content of the displacements again exhibit large displacements around the 
excitation frequency and the displacements due to a slab with a continuous slab decays more 
quickly compared to those for a track with a discontinuous slab. 
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Figure 2: The displacement at x=0, y=0, z=0 due to a harmonic load with frequency 10Hz moving 
with a constant velocity 40km/hr on (-) a track with continuous slab and (…) a track with a 
discontinuous slab.  
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Figure 3: The displacement at x=0, y=0, z=0 due to a harmonic load with frequency 100 Hz moving 
with a constant velocity 40km/hr on (-) a track with continuous slab and (…) a track with a 
discontinuous slab.  

 
 
Figures 4 and 5 show the maximum displacements at two points in the free surface (x=0, 

y=0, z=0) and (x=0, y=10, z=0) respectively for excitations frequencies in the range 1-200Hz. 
At each excitation frequency, displacements are calculated in the frequency domain as 
demonstrated in section 2. Results are then transformed to the time domain and the maximum 
displacement is recorded. The process is then repeated for all excitations frequencies in the 
frequency range of interest to produce the results in Figures 4 and 5. 
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Figure 4: The max. displacement at x=0, y=0, z=0 due to a harmonic load moving with a constant 
velocity 40km/hr on (-) a track with continuous slab and (…) a track with a discontinuous slab.  

 
It can be seen from Figures 4 and 5 that the displacements for the track with the 

discontinuous slab have two pronounced peaks at 63 Hz and 174 Hz. At these frequencies, 
displacements at the free-surface from the track with the discontinuous slab are more than 10 
dB larger than those resulting from the track with the continuous slab. The peaks are 
attributed to standing waves which are built by reflections of propagating waves at free ends 
of the slab. The frequencies of these peaks can be calculated from the free-free beam natural 
frequencies, see [8] for example, which reads 
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where 73.41 =λ , 853.72 =λ , 996.103 =λ , etc… 
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Figure 5: The max. displacement at x=0, y=10, z=0 due to a harmonic load moving with a constant 
velocity 40km/hr on (-) a track with continuous slab and (…) a track with a discontinuous slab.  
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For the current parameters of the track, the first two natural frequencies occur at 63.2 and 

174.2 Hz, which agree with the results in Figures 4 and 5.  

5. CONCLUSIONS 

A new model for calculating vibration from floating-slab tracks with discontinuous slabs in 
underground railway tunnels is presented. The model is based on the periodic-infinite 
structure theory and Euler-Bernoulli beam theory to account for the track. A tunnel wall 
embedded in an elastic half-space is modelled using the PiP model. The displacements at the 
free-surface are calculated and compared with those of tracks with continuous slabs. A 
floating-slab track with a discontinuous slab results into more vibration at the resonance 
frequencies of the slab. These frequencies can be calculated using the equation of the natural 
frequencies of a free-free beam.   
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