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Abstract 
 
Within an experimental framework, in porous saturated media, it remains a delicate problem 
to identify sound speed and attenuation, two related characteristics. Using a temporal method 
is problematic as samples are short and, moreover, the Fourier transform is unable to extract 
information from the frequency domain.  
 Wavenumbers can be identified by stationary methods, but the ratio of displacements at 
the sample exit to displacements at the entry does not depend linearly on the wavenumber. A 
non-convex minimization is quite unreliable, since it depends on the initial value it has to start 
from. A genetic algorithm could certainly be of some help here. However, with a rather more 
physical insight, when dealing with samples of different lengths, averaging the results could 
already improve reliability. Here we suggest going further in the same vein, using a different 
approach to reach a robust result.  
 Indeed, as said previously, the function available is not linear with regard to the 
parameters. But starting from a first identified value, the perturbation method makes it 
possible to linearize the function with regard not to the parameter itself but to its variation. 
Such an approach provides not only information about the stability of the function with the 
parameter variation but also, within the limits of stability, an analytical solution, thanks to the 
now convex optimization of the variation which will refine the initial value.  
 This presentation provides an analysis of the approach. It is the first step towards the 
study of how the model influences the stability of the identification, a problem which is 
definitely of interest today. 
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1. INTRODUCTION 

Knowing the acoustic properties of sediments is a key element in the interpretation of 
measurements performed by geophysical instruments such as sub-bottom profilers. Various 
theoretical approaches allow these acoustic properties to be determined. However, 
surprisingly, experimental approaches are extremely rare. Stevenson et al. [1] present a 
laboratory work combined with in situ experiments on silty clays. Wilson et al. [2] worked on 
laboratory experiments on water-saturated granular sediments. These two recent publications 
give an idea of how delicate the identification of acoustic properties through laboratory 
measurements can be today.  

In our case, a laboratory experimental set-up is developed and an acoustic wave 
propagation model is deployed in high-water-content soils, in order to the measure the sound 
speed and attenuation. The experimental set-up features a shaker which delivers acoustic 
waves (frequencies between 1 and 15 kHz) to the sample. The sample is placed in a rigid 
envelope and behaves like a waveguide. Two accelerometers measure the emitted and the 
transmitted signals.   

A spectral study on displacements enables an inverse analysis to be performed to extract 
sound speed and attenuation from the measurements. It appears that results for the sound 
speed are accurate enough for the final aim, but results for the attenuation are not. Therefore, 
measurements are performed on three samples containing identical material but of different 
lengths, and these measurements are used simultaneously in an attempt to improve reliability.  

The study is divided into two steps. First, the identification method, followed by the 
improvement method, is performed on numerically simulated signals, which are obtained with 
a direct problem analysis. Then, the signal analysis is performed on real measurements. This 
paper deals with the first step.  

2. DIRECT PROBLEM  

2.1. Introduction 

For the time being, the acoustic model is based on the linear propagation of a single wave. 
The cylindrical sample diameter is 5 cm and the expected sound speed is around 1500m/s. 
According to the modal theory [3], the guided acoustic wave propagating along the axial 
direction is plane (i.e. all the points on a cross section vibrate in phase) till around 17 kHz. 
The material is supposed to be homogeneous and isotropic (behaving like a one-phase-
material), and also viscoelastic.  

The study of wave propagation in viscoelastic materials, the constitutive law (stress-
strain relationship ( )εσ ) of which is εεσ �EE ′+= , yields the harmonic wave equation:  
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where u  is the longitudinal acoustic displacement (along the cylinder axis), ω  the angular 
frequency in srd / , E  and E′  the elastic and the viscoelastic coefficients which appear in the 
constitutive law. Identification with the well-known Helmholtz equation leads to the complex 
wavenumber k  such that  



ICSV14 • 9-12 July 2007 • Cairns • Australia 

EiE
k

′+
=

ω
ρω 2

2                 (2) 

 
For 0=x , the measured emitted displacement 0u  constitutes the first data. For Lx = , a 

rigid plate coupled to an accelerometer (the mass of both the plate and the accelerometer is 
noted m ) lies on the sample. The analysis of that specific boundary leads to the following 
condition, in the spectral domain:  
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The previous paragraphs lead to the operator:  
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with the acoustic reduced admittance ρβ Simk−= . Its solution is easily obtained by hand:  
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with the acoustic reflection coefficient at L  defined by 
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the solution at L  is 
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For the sake of simplicity, the ratio ( ) 0uLu  will now be written 0/Lu , and is in fact the main 
data. 

For a viscoelastic material, the complex wavenumber k  is given by the following 
expression 
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due to the choice of ( ) ( )tiet ωω += Recos  for the frequency domain calculations, c  being the 
sound speed in sm / , α  the attenuation in mNp / . Therefore, the acoustic properties that are 
dealt with are the sound speed and the attenuation, through the complex wavenumber.  
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3. IDENTIFICATION PROCEDURE USING STATIONARY METHODS 

The identification procedure consists in determining the material properties through the 
evaluation of the complex wavenumber, starting from the ratio (and values for m , S  and ρ ). 

Considering Eq.(5), let ( )kF  be the following function:  
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There are two ways of dealing with the identification of k . The first consists in finding 

the zeros of ( )kF . The second consists in seeking the wavenumber which minimizes ( )kF , 

starting from an initial value inik . The latter method is chosen in the present study.  
The wavenumber is expected to depend on the frequency, according to its expression, 

but the manner in which it depends on the frequency is not yet known. Therefore, there is no 
point in looking for an average wavenumber over the whole frequency range, and each 
inverse analysis is carried out for one particular frequency.  

Complex wavenumbers are obtained with this method, but as it is a non-convex 
problem, it may often lead to erroneous results, first because it depends on inik , second in case 

of error in the data 0/Lu . Obviously, the closer the initial value inik  to the solution, the better 
the chance of obtaining a good estimation of the wavenumber. And it has been observed that 
the greater the amplitude of 0/Lu , the better the chance of obtaining a good estimation of the 
wavenumber also.  

To go further in terms of precision, the perturbation method is presented in the next 
paragraph. It makes it possible to linearize the function with regard not to the parameter itself 
but to its variation. Several simulations will be carried out in order to estimate the 
performances of the method, and compare it to the more straightforward average method, in 
which the three wavenumbers, obtained from the identification with the three samples of 
different lengths, are averaged.  

4. LINEARIZATION OF THE ACOUSTIC MODEL WITH REGARD TO THE 
WAVENUMBER VARIATION, AND ITS OPTIMIZATION IN L2 

Let k  be the solution to the problem. A close value to that wavenumber, 0k , is supposed to be 
known. The solution can now be written ε+= 0kk . It then becomes possible to linearize 
Eq.(5) with regard to the perturbation ε , yielding the following expression:  
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the assumptions: ( ) 10 <<− imkSim ρε , 1<<Lε  and 1<<cdε . Later, it will be seen that 
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these hypotheses may be the same as those which allow local and global minima to be merged 
in the non-convex identification problem. Therefore,  

 
( ) ( )LmSkfuLmSkg L ,,,,,,,, 00/0 ρερ −≈     (10) 

 
It should be noted that the physical propagation model exists in g  as well as in f , 

though from the computational point of view, the model is only formed by g , while the 
objective is formed by both the 0/Lu  measurement and f . Therefore, the situation is one 
where the physical model also plays a role in the objective. 

Eq. (10) is established for each sample length. However, three measurements for 0/Lu  
are available, and the perturbationε  ought not to depend on the sample length. For one 
length jL  ( )3,2,1=j , the equation can be written ( ) jjLj fug −≈ 0/ε  (for the sake of simplicity, 

( ) jLu 0/  will now be written 0/jLu ). Given these considerations, the simple matrix equation can 

be written FG =ε , the solution of which is given by the following expression:  
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A proper conditioning of GG
T
. ensures that the above expression will provide an acceptable 

result. That conditioning is related to the independence of terms in G  associated to various 
sample lengths and can only be observed ex post facto. In the proposed tests, no indication of 
poor conditioning emerged during the computations.  

5. NUMERICAL SIMULATIONS AND COMPARISON BETWEEN TWO 
METHODS FOR IMPROVING THE WAVENUMBER OBTAINED 

5.1 Efficiency 

The displacements which stand for data are simulated thanks to the direct problem. The 
present study deals with the influence of the initial value for the wavenumber, at a given 
frequency (here f =2.3kHz). In the identification procedure, the initial value is inik , and in the 
perturbation method the initial value is 0k . 

5.1.1 First case : kkkini 7.10 ==  

DATA      ik 41.063.9 −=  and ikini 70.038.16 −=   

NON-CONVEX METHOD:  ik L 41.039.231
0 += , ik L 41.063.92

0 −= , ik L 39.080.253
0 −=  

      ( ) iLLkaverage 40.072.17, 32 −=  

CONVEX METHOD:    ik perturb 47.138.16 −=  

One of the values obtained using non-convex optimization ( 1
0
Lk ) is not acceptable, as the 

imaginary part of the wavenumber is expected to be negative, since it characterizes 
attenuation and not amplification. One acceptable result is erroneous ( 2

0
Lk ), and the third 

value obtained is the solution. With the average method the acceptable results lead to an 
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erroneous result. Finally, the perturbation method gives an acceptable result which is quite far 
from the expected solution, and it seems that iterations do not lead to the solution either.  

5.1.2 Second case: kkkini 5.10 ==  

DATA     ik 41.063.9 −=  and ikini 62.045.14 −=   

NON-CONVEX METHOD:  ik L 41.063.91
0 −= , ik L 41.003.122

0 += , ik L 41.063.93
0 +=  

      ( ) iLLkaverage 41.063.9, 31 −=  

CONVEX METHOD:   ik perturb 15.100.14 −=  

In this case, as previously, one of the obtained values is not acceptable ( 2
0
Lk ). The two other 

results are the expected solution, and, therefore, the average method yields the solution. The 
perturbation method yields an erroneous result, but nine iterations are enough to make it 
converge to the solution.  

5.1.3 Third case: kkkini 2.10 ==  

DATA     ik 41.063.9 −=  and ikini 0.50 11.56 −=   

NON-CONVEX METHOD:  ik L 41.063.91
0 −= , ik L 41.003.122

0 += , ik L 41.063.93
0 −=  

      ( )  i9.63 41.0, 31 −=LLkaverage  

CONVEX METHOD:   ik perturb 77.011.06 −=  

Results obtained for kkk ini 2.10 ==  are very similar to those obtained for kkk ini 5.10 == , 
except that only 5 iterations are required to obtain the solution with the perturbation method.  

5.1.4 Conclusion 

These few tests show that performances of both methods (average method after identification 
procedure, and perturbation method) are globally equal. If results could be generalized, the 
conclusion could be that hypotheses for the convex method do correspond to the equivalence 
of local and global minima in the non-convex procedure.  

5.2 Robustness 

The displacements which stand for data are simulated thanks to the direct problem, and 
undergo random noise, with a Gaussian distribution around the simulated value 0/Lu , so that 
they are always in the 0/8.0 Lu  to 0/2.1 Lu range. The initial values proposed in the 

identification process are written ( )321 ,, L
ini

L
ini

L
ini kkk . The inverse analysis on the three different 

lengths yields ( )321
000 ,, LLL kkk . The result obtained for the first length 1L  cannot be improved by 

iteration in a new inverse analysis, but it is possible to improve it by using it as the initial 
value 0k  in the perturbation method. In the previous paragraph, 1

0
L
inikk = , whereas now 

1
00
Lkk = . This approach allows us to compare the non-convex method alone to the non-

convex method followed by the convex one (perturbation method). The average method 
yields ( ) 3321

000
LLL

average kkkk ++= . The perturbation method yields ε+= 1
0
L

onperturbati kk . 

In order to compare performances of the two procedures, two series of tests are run. In 
the first case, kk ini 8.0= , whatever the length, which helps to determine the robustness of the 
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two methods. The second case is supposed to approach reality with kkk ini 2.18.0 << . It 
should be underlined that when considering kkk ini 2.18.0 <<  in the identification procedure, 
these initial values for the wavenumber are different for the three different lengths, and are 
different for the real and the imaginary parts of these wavenumbers: 

( ) ( ) ( ) ( ) ( ) ( )332211 ImReImReImRe L
ini

L
ini

L
ini

L
ini

L
ini

L
ini kkkkkk ≠≠≠≠≠ .  
In each case, a graph is plotted showing the percentages of error obtained by the average 

method (in green) and by the perturbation method (in red). The results presented were 
computed for a frequency of kHzf 3.2= , which corresponds to a resonance peak 
for mL 2.01 = , and to a normal regime for mL 4.02 =  and mL 6.03 = , according to the direct 

problem, (for kgmmkgmS 02.0,.1300,10.59.1 323 === −− ρ ), as shown on Fig 1.  
 

 
Fig. 1. – Spectrum obtained with the direct problem 
( kgmmkgmS 02.0,.1300,10.59.1 323 === −− ρ ). 

 

  
Fig. 2. – Error percentages on the real part (left) and on the imaginary part (right) of the wavenumber 

obtained with signals which have undergone random noise, and for kkini 8.0=  , and 1
00
Lkk =  

( kgmmkgmS 02.0,.1300,10.59.1 323 === −− ρ ). 
 

Fig.2 shows that the perturbation method is more robust than the average. This 
observation can be explained by the fact that the initial value in the perturbation method is 

1
0
Lk , which is already close to the solution as it derives from the inverse analysis performed on 

the signal which shows a resonance peak at kHzf 3.2= . Error percentages, in the 
perturbation method, reach 3% at most on the real part of the wavenumber (and therefore on 
the sound speed) and 30 % at most on the imaginary part (and therefore on the attenuation).  

Fig. 3 shows results obtained in the case where signals have undergone random noise, 
and kkk ini 2.18.0 <<  in the identification procedure. The reason for presenting this case is 
that it can reflect the computation carried out using laboratory measurements. When 

kkk ini 2.18.0 << , the perturbation method is still better than the average method, just as for 
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inikk =8.0 , and the error percentages are smaller than in the previous case, an outcome which 
was expected intuitively. 
 

  
Fig. 3 - Error percentages on the real part (left) and on the imaginary part (right) of the wavenumber 

obtained with signals which have undergone random noise, and for kkk ini 2.18.0 <<  , and 1
00
Lkk =  

( kgmmkgmS 02.0,.1300,10.59.1 323 === −− ρ ). 

6. CONCLUSION 

When seeking the acoustic properties of high-water-content material, the difficulty lies in 
finding simultaneously sound speed and attenuation. Modeling the sediment and the container 
(especially boundary conditions) in a laboratory set-up, and performing an identification 
procedure on measurements using that model does lead to a complex wavenumber, and 
therefore to the acoustic properties of interest here. To improve these results, two methods 
were envisaged, both exploring the fact that measurements can be performed on samples with 
different lengths. The present study consisted in comparing them, and it appeared that, as far 
as efficiency was concerned, performances of the perturbation method and of the average 
method on results obtained from the identification procedure seem to be similar. But, as far as 
robustness was concerned, the perturbation method performed using a primary result obtained 
with the identification method gave far better results than the simple average. The procedure 
will soon help to obtain the acoustic properties of material tested in the laboratory.  

The approach could be extended to more complex models. Indeed, nothing guarantees 
today that high-water-content clayey soils behave as one-phase-material, and are perfectly 
viscoelastic. With a two-phase material, the model would be extended to coupled linear 
waves. Considering increasingly complex behaviours, cases of weak and strong non-linearity 
ought also to be envisaged.  
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