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Abstract

In this paper, we study the noise attenuation in poroelasticliners exposed to grazing flow. The
acoustic propagation in the liner and in the aeroacoustic domain are respectively governed by
Biot’s model and Galbrun’s equation. Here, the coupling between Galbrun’s and Biot’s equation
is realized with a mixed pressure-displacement finite element method. This formulation is quite
natural since both equations have an efficient formulation in this form. On the one hand, mixed
formulation is used in Galbrun’s equation to avoid numerical locking, in the other hand, this is
useful in poroelasticity to save degrees of freedom. Under the assumptions there is no flow in
the liner and uniform mean flow in the acoustic domain, this method is validated by an analytic
method in an infinite duct.

1. INTRODUCTION

Porous materials are extensively used in automotive and in aircraft industry for environmental
noise reduction. To improve the comprehension and the design, a robust numerical method is
needed for this problem. To take these treatments into account, many levels of modeling can be
used: local reactive impedance, an equivalent fluid and Biot’s model. Only the latter preserves
vibro-acoustic interactions, absorption and the propagation in the liner. In recent papers, an
efficient mixed formulation in pressure - solid displacement of Biot’s equations was proposed
by Atalla et al. [2]. These authors have already investigated the coupling with elastic structures
and acoustical media at rest. Moreover, in aeronautics, thepresence of non-potential mean flow
complicates the acoustic propagation models. Two equivalent physical models are proposed in
the literature: the Linearized Euler’s Equations (LEE) andthe Galbrun’s equation. The latter is
written in term of the Lagrangian perturbation of the displacement and allows a direct treatment
of the coupling condition at the interface [7], whereas LEE need appropriate condition (Myers
[9]). For several years, we have worked on Galbrun’s equation and have developed a mixed
finite element formulation in pressure - displacement to avoid numerical locking, Treyssèdeet
al. [10]. Furthermore, a coupled vibroacoustic model was proposedby Gabardet al. [7] and has
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shown the great influence of the elastic structure on the acoustics. This work continue with this
way of coupling with poroelastic liners.
In the next section, we shall recall some basics of Galbrun’sand Biot’s equation and propose a
coupling formulation. Finally, we validate our numerical model with an analytical solution.

2. THEORY

2.1. Galbrun’s equation

Galbrun’s equation derives from general fluid mechanic conservation equations, whereby the
linearization process is carried out with a lagrangian perturbation, namely, associated with a
fluid particule and not to a geometric point. The direct resolution of harmonic Galbrun’s equa-
tion with the Finite Element Method (FEM) gives rise to corrupted results with non-structured
mesh. To overcome this difficulty, themixed FEM formulation has been introduced and exten-
sively discussed in previous works [7, 10].
Under the assumption of a perfect fluid and an isentropic eulerian flow, the equation can be
written in the frequency domain (e−iωt) as follows :

− ρ0ω
2w − 2iωρ0v0 · ∇w + ρ0v0 · ∇(v0 · ∇w) + ∇pL = 0 , (1)

pL + ρ0c
2
0∇ · w = 0 . (2)

Here, subscripts “0” denotes the mean flow variables,pL is the lagrangian acoustic pressure and
w the lagrangian displacement perturbation. The associatedweak formulation is

−
∫

Ωa

1

ρ0c
2
0

pL∗pLdΩ +

∫

Ωa

∇pL∗ · wdΩ +

∫

Ωa

w∗ · ∇pLdΩ − ω2

∫

Ωa

ρ0w∗ · wdΩ

−iω
∫

Ωa

ρ0w∗ · (v0 · ∇w)dΩ + iω

∫

Ωa

ρ0(v0 · ∇w∗) · wdΩ −
∫

Ωa

ρ0(v0 · ∇w∗) · (v0 · ∇w)dΩ

+

∫

∂Ωa

w∗ ·
{

ρ0(v0 · na)
dw
dt

}

dS

︸ ︷︷ ︸

I1

−
∫

∂Ωa

pL∗(w · na)dS = 0 , ∀
{

w∗, pL∗
}
, (3)

with the test functionspL∗, w∗ andna denotes the normal unit vector pointing away from the
fluid domainΩa. The extension in the three dimensional case has been carried out by Bériotet
al. [3] and his tetrahedral element T5-4c, will be used in the remainder of the paper. Interpo-
lation is linear for the pressure and a bubble function is added for the displacement in order to
respect the inf-sup condition.

2.2. Biot’s model

2.2.1. Displacement - Displacement original formulation and Biot waves

For statistically isotropic materials, Biot’s model [4] is grounded on the superposition of a fluid
phase and a solid phase which are inertially coupled with theeffective density coefficientρij.
Furthermore, the stress tensor, is also a superposition of asolid and a fluid tensor. The original
set of equations, gives (4-5) and will be useful in the validation in Section3. For the numerical
implementation, the equivalent Atalla’s mixed formulation [2] will be used to simplify coupling
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Table 1. Materials properties used in numerical tests

Mat φ σ [kNm−4s] αinf Λ [µm] Λ′ [µm] ρ1 [kgm−3] E [kPa] ν

XFM 0.98 13.5 1.7 80 160 30 540(1 -j0.05) 0.35

conditions and to save computation time. Indeed, only 4 degrees of freedom (dof) per node are
needed instead of 6 dof in the(u,U) formulation.

P̃∇(∇ · u) − Ñ∇∧ (∇∧ u) + Q̃∇(∇ · U) + ω2(ρ̃11u + ρ̃12U) = 0 (4)

Q̃∇(∇ · u) + R̃∇(∇ · U) + ω2(ρ̃12u + ρ̃22U) = 0 (5)

Ã, Ñ , P̃ , Q̃, R̃ are Biot’s coefficients as defined in [1, 4]. Ã and Ñ correspond to the Lamé
coefficients andP̃ = 2Ã + Ñ . R̃ is the bulk modulus of the fluid phase and̃Q indicates the
coupling of the two phases volumic dilatation. We can note that the imaginary part ( “̃” denotes
complex coefficients) of̃A andÑ includes the structural damping and, iñQ and R̃ this part
includes the thermal dissipation. Those parameters are function of the material properties given
in Table 1 (Here we considered the porous material XFM, see Table 1 in [6]).

2.2.2. The mixed displacement pressure formulation

The Atalla’s mixed formulation as presented in [2] is

∇ · σ̃s(u) + ω2ρ̃ u + γ̃ ∇p = 0 ,

∆p+ ω2 ρ̃22

R̃
p− ω2 ρ̃22

φ̃2
γ̃ ∇ · u = 0 . (6)

Here,p is the pressure in the fluid phase andu is the solid phase displacement vector,γ̃ =

φ
(

ρ̃12

ρ̃22

− Q̃

R̃

)

andρ̃ = ρ̃11 − ρ̃2

12

ρ̃22

.

The associated weak formulation, considering the test function p∗ andu∗, is

∫

Ωp

σ̃s(u) : ε(u∗)dΩ − ρ̃ ω2

∫

Ωp

u · u∗dΩ +

∫

Ωp

[
φ2

ω2ρ̃22

∇p · ∇p∗ − φ2

R̃
p p∗

]

dΩ

−
∫

Ωp

[

γ̃ + φ

(

1 +
Q̃

R̃

)]

(∇p∗ · u + ∇p · u∗)dΩ − φ

(

1 +
Q̃

R̃

)
∫

Ωp

(p∗∇ · u + p∇ · u∗) dΩ

−
∫

∂Ωp

[
σt n

]
· u∗dS −

∫

∂Ωp

φ
(
U f

n − un

)
p∗dS = 0 , ∀ {p∗,u∗} , (7)

where,n denotes the outward normal unit vector to the poroelastic domainΩp.

2.3. Coupling method

2.3.1. Coupling Conditions

Coupling conditions without flow are summarized by Debergueet al. [6] for several config-
urations. Here, we shall focus on a “direct” coupling, without an impermeable membrane for
example, but there is no hindrance to implement them and only(10) is modified.
The first condition, given by (8), comes from the standard continuity requirement of the nor-



ICSV14 • 9–12 July 2007 • Cairns • Australia

mal stress at the interface and remains valid with flow. The second condition (9), ensures the
continuity of the pressure and (10), the continuity of the mass flux at the interface. The last two
conditions must be satisfied for a fluid particle,i.e. in the sense of the lagrangian perturbation.
We can note that in the mixed formulation,w is a nodal variable and this avoids the need for
computing the normal derivative of the acoustic pressure asit is the case for the Helmholtz
equation.

[
σ̃t n

]
= −pL · n , (8)

p = pL , (9)

wn = φ(Un − un) + un . (10)

2.3.2. Global Formulation

The global formulation is obtained by summing (3) and (7). Because of the length of expres-
sions, we shall detail only boundary terms on the coupling surfaceΓ in (12). Firstly, theI1
integral in (3) vanishes onΓ: because there is no flow in the liner, vectorsv0 andna are orthog-
onal. Both conditions (8) and (10) are directly substituted in boundary terms. But, as for the
Biot-Helmholtz coupling, the second condition (9) can not be imposed in the weak formulation.
Authors have resorted to Lagrange multipliers or imposed directly the relation in the system.
Here, we introduce an additional functional as suggest by Hamdi [2]

∫

Γ

w∗

n

(
pL − p

)
dΓ = 0, ∀ {w∗} , (11)

andw∗ plays the same role as a Lagrange multiplier. As this condition is added directly in the
formulation we could relax the constraint in (9) and replacepL by p. These two manipulations
yield a symmetric formulation of the coupling integrals andwe get onΓ

∫

Γ

p · u∗ndΓ +

∫

Γ

p∗ · undΓ +

∫

Γ

pL · w∗

ndΓ +

∫

Γ

pL∗ · wndΓ

−
∫

Γ

p∗ · wndΓ −
∫

Γ

w∗

n · pLdΓ = 0, ∀
{
p∗,u∗, pL∗,w∗

}
. (12)

The first line of (12) shows the Pressure-displacement coupling in each domain whereas the
second gives Pressure-displacement coupling between the two domains. It’s worth observing
that this coupling is due to a symmetric operator between lagrangian displacementw and the
fluid pressure in the porous,p.

3. RESULTS AND VALIDATION

3.1. Analytical solution in the case of an uniform mean flow

In order to validate our numerical model, an analytical model with uniform mean flow of Mach
numberM , is established in an infinite duct. In this case, complex mode shape and the axial
wave number could be found. To validate our FEM model, we shall evaluate his capacity to
propagate these modes.
Guided waves in porous material have been recently used by Boeckx et al. [5], in a material
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properties identification method context. We propose here an extension to cylindrical coordi-
nate.

3.1.1. Helmholtz decomposition in cylindrical coordinate

In the porous material, we could use the Helmholtz decomposition for the fluid and solid dis-
placement to decouple Biot’s equation [1]. These fields can be written

u = ∇ϕ+ ∇∧ ψ , U = ∇χ+ ∇∧ Θ. (13)

We can note that this decomposition is not unique and an arbitrary condition must be added on
vector potentials. After decoupling, we have

ϕ = ϕ1 + ϕ2 , χ = µ1ϕ1 + µ2ϕ2, (14)

where,

µi =
P̃ k2

i − ω2ρ̃11

ω2ρ̃12 −Qk2
i

, i = 1, 2 , (15)

are the waves amplitude ratios between the two phases in the porous material.
Similarly, the vector potentialΘ could be rewritten as

Θ = µ3ψ , with µ3 = ρ̃12/ρ̃22. (16)

Under this form, each potential fulfills the wave equation with the complex wave numbers
given by Eq. (17-19). At least, there are two compressional waves and one rotational wave
which can propagate in an isotropic porous material. Each wave is present in the two phases
(his importance is given byµi) but compressional and rotational wave are not coupled. This is
a common result in solid mechanics, but the presence of two phases in the porous material adds
a new compressional wave due to the fluid phase and associatedto the scalar potentialφ2.

k2
1 =

ω2

2(P̃ R̃− Q̃2)
(P̃ ρ̃22 + R̃ρ̃11 − 2Q̃ρ̃12 +

√
∆), (17)

k2
2 =

ω2

2(P̃ R̃− Q̃2)
(P̃ ρ̃22 + R̃ρ̃11 − 2Q̃ρ̃12 −

√
∆), (18)

k2
3 =

ω2

Ñ

(
ρ̃11ρ̃22 − ρ̃2

12

ρ̃22

)

, (19)

with ∆ = (P̃ ρ̃22 + R̃ρ̃11 − 2Q̃ρ̃12)
2 − 4(P̃ R̃− Q̃2)(ρ̃11ρ̃22 − ρ̃2

12).
The pressurep in the fluid phase, given by Biot [4], is deduced from the fluid stress tensorσf

and porosityφ
σf = −φp I and − φp = Q̃∇ · u + R̃∇ · U . (20)

In cylindrical coordinate(r, θ, z), Gazis [8] gives the general form of the potential expressed in
term of Bessel function for hollow elastic cylinders. The extension to the poroelastic requires
one additional scalar potentialφ2. Moreover, without loss of generality, the azimuthal mode
number is fixed to zero. In the same way the velocity scalar potential could be defined in the
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acoustic domain under a uniform mean flow assumption, with,

k2
ar = (ka −Mkz)

2 − k2
z , andka = ω/co (21)

3.1.2. Dispersion equation

The coupling conditions are the same as those given Section2.3.1. We could just mention that
the pressure is given with material derivative of the acoustic velocity potentialφa. In addition
we chose a configuration, described in Fig.1 where the liner is clamped on a the rigid and
impermeable wall of the duct. This yields

u = 0 and Un − un = 0 on Γr . (22)

These conditions signify that the solid phase displacementis null as well as the relative normal
displacement between the two phases.
The application of coupling conditions and boundary conditions leads to the linear system

M(kz)A = 0 , (23)

whereM(kz) is a 7×7 matrix with analytic components andA is the row vector containing
the wave amplitudes. Theith complex mode(ki

z,A
i) we are looking for corresponds to the non-

trivial solution of this system. The numerical solution of the dispersion equation detM(kz) = 0

is quite difficult and is carried out in two steps. Firstly, a coarse sweep in the complex plan is
achieved to locate theki

z. Then, these values are chosen to initialize an optimization algorithm.

3.2. Validation with an uniform mean flow

In this section we shall compare our model with the analytical model. For each case, the analyt-
ical solution is imposed on theΓin andΓout surface (depicted in Fig.1) in the FEM model. In
the acoustic domainΩa, only the displacement is imposed, whereas in the poroelastic domain
Ωp, both quantities are imposed. In practical configuration this is not an important limitation
because the liner is completely confined in the duct. Four elements are used in the radial direc-
tion in acoustic domain, 6 in the porous domain and 18 per wavelength in the axial direction as
shown in Fig.2-3. It’s worth observing that the same mesh have been used to plot the analytic
solution. Both fluid domain and porous solid phase displacement fields are plotted on the same
figure, that is why fields are discontinuous as indicated by (10) and also why the order of mag-
nitude are quite different, but the pressure continuity is provided.
In Fig. 2-3, we note an excellent agreement between the numerical and the analytical model.
Indeed theE2 error in a sectionS, defined in (24) and summarised in the Table2, never exceeds
2.6% for all quantities.

E2(Φ) = 100 ×
∥
∥ΦFEM − ΦANA

∥
∥

L2(S)

‖ΦANA‖L2(S)

(24)
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Figure 1. Sketch of the validation problem
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Figure 2. Pressure forM = 0, f = 600 Hz,
kz ≈ 21.8 + 8.9j. Air from r = 0 to r = 0.03

m. XFM from r = 0.03 to r = 0.1m
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Figure 3. Numerical results (FEM) and analytic results (ANA) for the realpart of acoustic quantities for
M = 0.3, f = 600 Hz,kz ≈ 15.6+5j. Air from r = 0 to r = 0.03 m. XFM from r = 0.03 to r = 0.1m
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Table 2. ErrorE2 for M = 0.3, 600 Hz, kz ≈ 15.6 + 5j

Quantity Pressure Radial Disp. Axial Disp.

Error (%) 1.69 1.43 2.57

4. CONCLUDING REMARKS

In the present work, Atalla’s mixed FEM formulation of Biot’sequation (assuming there is no
flow in the liner), was coupled with our mixed FEM formulationof Galbrun’s equation. By tak-
ing advantage of the two formulations in pressure-displacement, all coupling conditions can be
applied naturally. Finally, our coupling terms are symmetric and quite similar to those obtained
with a classic Helmholtz’s coupling. Our numerical resultsshow a very good agreement with the
analytic model and this is engaging to continue to a more applied noise reduction benchmark.
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