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Abstract

In this paper, we study the noise attenuation in poroeléisgts exposed to grazing flow. The
acoustic propagation in the liner and in the aeroacoustigaito are respectively governed by
Biot’s model and Galbrun’s equation. Here, the coupling leetvGalbrun’s and Biot’s equation
Is realized with a mixed pressure-displacement finite etémmeethod. This formulation is quite

natural since both equations have an efficient formulatahis form. On the one hand, mixed
formulation is used in Galbrun’s equation to avoid numéediaeking, in the other hand, this is

useful in poroelasticity to save degrees of freedom. Unlderaissumptions there is no flow in
the liner and uniform mean flow in the acoustic domain, thishoe is validated by an analytic

method in an infinite duct.

1. INTRODUCTION

Porous materials are extensively used in automotive angtaraét industry for environmental
noise reduction. To improve the comprehension and the deaigobust numerical method is
needed for this problem. To take these treatments into atcmany levels of modeling can be
used: local reactive impedance, an equivalent fluid and 8ratdel. Only the latter preserves
vibro-acoustic interactions, absorption and the propagah the liner. In recent papers, an
efficient mixed formulation in pressure - solid displacem&Biot's equations was proposed
by Atallaet al. [2]. These authors have already investigated the couplingelétstic structures
and acoustical media at rest. Moreover, in aeronauticqréssence of non-potential mean flow
complicates the acoustic propagation models. Two equivaleysical models are proposed in
the literature: the Linearized Euler's Equations (LEE) #mel Galbrun’s equation. The latter is
written in term of the Lagrangian perturbation of the displament and allows a direct treatment
of the coupling condition at the interfacé]] whereas LEE need appropriate condition (Myers
[9]). For several years, we have worked on Galbrun’s equatimhleave developed a mixed
finite element formulation in pressure - displacement tacamomerical locking, Treyssecds

al. [10]. Furthermore, a coupled vibroacoustic model was propbgedabarcet al. [7] and has
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shown the great influence of the elastic structure on thestiosu This work continue with this
way of coupling with poroelastic liners.

In the next section, we shall recall some basics of GalbramndBiot’s equation and propose a
coupling formulation. Finally, we validate our numericabdel with an analytical solution.

2. THEORY

2.1. Galbrun’s equation

Galbrun’s equation derives from general fluid mechanic eoraion equations, whereby the
linearization process is carried out with a lagrangianysbgtion, namely, associated with a
fluid particule and not to a geometric point. The direct regoh of harmonic Galbrun’s equa-

tion with the Finite Element Method (FEM) gives rise to cqted results with non-structured

mesh. To overcome this difficulty, threixed FEM formulation has been introduced and exten-
sively discussed in previous works, [LO].

Under the assumption of a perfect fluid and an isentropicriemdlow, the equation can be

written in the frequency domair (**) as follows :

— powW — 2iwpeVo - VW + poVo - V(Vo - VW) + Vpr = 0, Q)
Pl poctV-w = 0. (2)

Here, subscripts(” denotes the mean flow variableg; is the lagrangian acoustic pressure and
w the lagrangian displacement perturbation. The assocrete#t formulation is
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with the test functiong”*, w* andn, denotes the normal unit vector pointing away from the
fluid domain(,. The extension in the three dimensional case has beendarridy Bériotet

al. [3] and his tetrahedral element T5-4c, will be used in the redi of the paper. Interpo-
lation is linear for the pressure and a bubble function issaddr the displacement in order to
respect the inf-sup condition.

2.2. Biot’'s model
2.2.1. Displacement - Displacement original formulation and Biot waves

For statistically isotropic materials, Biot’s modd] js grounded on the superposition of a fluid
phase and a solid phase which are inertially coupled witheffextive density coefficient;;.
Furthermore, the stress tensor, is also a superpositiosalichand a fluid tensor. The original
set of equations, giveg+{5) and will be useful in the validation in Secti@ For the numerical
implementation, the equivalent Atalla’s mixed formulati@] will be used to simplify coupling
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Table 1. Materials properties used in numerical tests

Mat ¢ o [KNm~4s] ajy A[um] A [um] p; [kgm~3] E [kPa] v
XFM 0.98 135 1.7 80 160 30 540(10.05) 0.35

conditions and to save computation time. Indeed, only 4eksyof freedom (dof) per node are
needed instead of 6 dof in tia, U) formulation.

PV(V-U) = NV A (VAU +QV(V-U) +w?(pu+ prU) =
QV(V -u) + RV(V - U) + w*(p1oU + pnU) =

(4)
(5)

A,N,P,Q, R are Biot's coefficients as defined ii,[4]. A and N correspond to the Lamé
coefficients and® = 24 + N. R is the bulk modulus of the fluid phase afdindicates the
coupling of the two phases volumic dilatation. We can nogé the imaginary part (* denotes
complex coefficients) ofi and V includes the structural damping and,Ghand R this part
includes the thermal dissipation. Those parameters antifumof the material properties given
in Table 1 (Here we considered the porous material XFM, see Table @])n [

0
0

2.2.2. The mixed displacement pressure formulation

The Atalla’s mixed formulation as presented 2} is

V-3*u) +w?pu+5Vp = 0,

2p~22 2ﬁ22~ o
Ap—l—wﬁp—w ﬁfyv-u = 0. (6)

Here, p is the pressure in the fluid phase amds the solid phase displacement vector=
) (212 Q> andp = pi; — ty

P22

The associated weak formulation, considering the testimme* andu*, is

2 2
/Q%u):g(u*)dQ—ﬁuﬁ/ u-u*dQ—i—/ [ f~ Vp-Vp*—qs—pp]dQ

Q, - Qp Q, LW P22
(Vp*-quVp-u*)dQ—qb(l—i—%)/ (p*V -u+pV -u*)dQ
QP

_/)[fn]uWS— ¢ (Ul —u,)pdS =0, V{pu}, @)
o0, o0,

where,n denotes the outward normal unit vector to the poroelasticados?,.

2.3. Coupling method
2.3.1. Coupling Conditions

Coupling conditions without flow are summarized by Debergual. [6] for several config-
urations. Here, we shall focus on a “direct” coupling, withan impermeable membrane for
example, but there is no hindrance to implement them and(@0)yis modified.

The first condition, given by8), comes from the standard continuity requirement of the nor
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mal stress at the interface and remains valid with flow. Tio®seé condition 9), ensures the
continuity of the pressure and(@), the continuity of the mass flux at the interface. The last tw
conditions must be satisfied for a fluid partidle, in the sense of the lagrangian perturbation.
We can note that in the mixed formulation,is a nodal variable and this avoids the need for
computing the normal derivative of the acoustic pressurg ssthe case for the Helmholtz
equation.

g'nl=-p--n, (8)
p=rp", 9)
Wy, = O(Up — up) + Uy, (20)

2.3.2. Global Formulation

The global formulation is obtained by summir®) énd (7). Because of the length of expres-
sions, we shall detail only boundary terms on the couplingaseI" in (12). Firstly, the I;
integral in @) vanishes ori’: because there is no flow in the liner, vectegsandn, are orthog-
onal. Both conditions8) and (L0) are directly substituted in boundary terms. But, as for the
Biot-Helmholtz coupling, the second conditid®) €an not be imposed in the weak formulation.
Authors have resorted to Lagrange multipliers or imposeectly the relation in the system.
Here, we introduce an additional functional as suggest byndi§2]

/w: (pL — p) al' =0, Vv{w'} , (12)
r

andw* plays the same role as a Lagrange multiplier. As this camdis added directly in the
formulation we could relax the constraint i9) @nd replace” by p. These two manipulations
yield a symmetric formulation of the coupling integrals amelget onl”

/p-u;df‘—i—/p*-undf‘—l—/pL-w;;dF—l—/pL*-wndF
r r r r

—/p*~wndF—/wZ-pLdF:0, V{p*,u*,pL*,W*}. (12)
r r

The first line of (2) shows the Pressure-displacement coupling in each donfaémeas the
second gives Pressure-displacement coupling betweenvthddmains. It's worth observing
that this coupling is due to a symmetric operator betweeratagian displacement and the

fluid pressure in the porous,

3. RESULTS AND VALIDATION

3.1. Analytical solution in the case of an uniform mean flow

In order to validate our numerical model, an analytical medth uniform mean flow of Mach
number)/, is established in an infinite duct. In this case, complex enslthpe and the axial
wave number could be found. To validate our FEM model, wel shaluate his capacity to
propagate these modes.

Guided waves in porous material have been recently used bgkBae al. [5], in a material
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properties identification method context. We propose harexdension to cylindrical coordi-
nate.

3.1.1. Helmholtz decomposition in cylindrical coordinate

In the porous material, we could use the Helmholtz decontipasior the fluid and solid dis-
placement to decouple Biot’'s equatidl).[These fields can be written

U=Vp+VAY, U=Vy+VAO. (13)

We can note that this decomposition is not unique and anrarpitondition must be added on
vector potentials. After decoupling, we have

=1+ P2, X=M1p1+ H2p, (14)
where, )
Pl{?z — w2[~)11
i 2—7 - 17 2 ) 15
M 2 — Q2 13)

are the waves amplitude ratios between the two phases irotbegpmaterial.
Similarly, the vector potentiab could be rewritten as

O =z, With pz = pia/pas. (16)

Under this form, each potential fulfills the wave equatiorthwthe complex wave numbers
given by Eq. 17-19). At least, there are two compressional waves and one cotdtwave
which can propagate in an isotropic porous material. Eackeviapresent in the two phases
(his importance is given by;) but compressional and rotational wave are not coupleds iEhi
a common result in solid mechanics, but the presence of taegshin the porous material adds
a new compressional wave due to the fluid phase and assotoateziscalar potential,.

2

2= %1} 4 Rpyy — 20015 + VA, 17

1 (PR — O )( P22 + Rp11 — 2Qp1o ) (17)

k% = Rw—)(szz + RPM - QQPH - \/Z)7 (18)

K2 — <,011P22 P12> 7 (19)
P22

With A = (Ppay + Rpin — 2Qp12)* — 4(PR — Q%) (pr1p22 — ra)-

The pressure in the fluid phase, given by Bio4], is deduced from the fluid stress tensdr

and porosity B
o/ =—¢pl and —¢p=QV-u+RV-U. (20)

In cylindrical coordinatér, 6, =), Gazis B] gives the general form of the potential expressed in
term of Bessel function for hollow elastic cylinders. Theasdion to the poroelastic requires
one additional scalar potentiah. Moreover, without loss of generality, the azimuthal mode
number is fixed to zero. In the same way the velocity scalaeng@l could be defined in the
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acoustic domain under a uniform mean flow assumption, with,
k2 = (ko — Mk.)* — k2, andk, = w/c, (21)

3.1.2. Dispersion equation

The coupling conditions are the same as those given SeziBoh We could just mention that
the pressure is given with material derivative of the adoustlocity potentialp,. In addition
we chose a configuration, described in Figwhere the liner is clamped on a the rigid and
impermeable wall of the duct. This yields

u=0 and U,—-u,=0 onl,. (22)

These conditions signify that the solid phase displacensenill as well as the relative normal
displacement between the two phases.
The application of coupling conditions and boundary caodg leads to the linear system

M(k)A =0, (23)

where M(k,) is a 7x7 matrix with analytic components a is the row vector containing
the wave amplitudes. Thé€ complex modék:, A") we are looking for corresponds to the non-
trivial solution of this system. The numerical solution leétdispersion equation dét(k,) = 0

Is quite difficult and is carried out in two steps. Firstly, @acse sweep in the complex plan is
achieved to locate thi . Then, these values are chosen to initialize an optimizatigorithm.

3.2. Validation with an uniform mean flow

In this section we shall compare our model with the analytiwadel. For each case, the analyt-
ical solution is imposed on thie;,, andT’,,,; surface (depicted in Fidl) in the FEM model. In
the acoustic domaif,, only the displacement is imposed, whereas in the poreeldsimain
2,, both quantities are imposed. In practical configuratias i not an important limitation
because the liner is completely confined in the duct. Founetgs are used in the radial direc-
tion in acoustic domain, 6 in the porous domain and 18 per Weagth in the axial direction as
shown in Fig.2-3. It's worth observing that the same mesh have been used tthgl@nalytic
solution. Both fluid domain and porous solid phase displacerinelds are plotted on the same
figure, that is why fields are discontinuous as indicatedll®y &nd also why the order of mag-
nitude are quite different, but the pressure continuityrev/med.

In Fig. 2-3, we note an excellent agreement between the numerical ananiytical model.
Indeed theE? error in a sectiord, defined in 24) and summarised in the Talf’enever exceeds
2.6% for all quantities.

H(I)FEM . (I)ANAHL2(S)

12AM4] s

E%(®) =100 x (24)



ICSV14 « 9-12 July 2007 « Cairns * Australia

RE{])FEM} RG{pANA}

0.2
Tout
0
-0.2
-0.4
.
-0.6
vl . vl
DA NP -0.
SR e 08

0 0
0 005 0.1 0 005 0.1
r [m] r [m]

Figure 1. Sketch of the validation problem Figure 2. Pressure fak/ = 0, f = 600 Hz,
k, ~ 21.8 + 8.95. Airfromr = 0tor = 0.03
m. XFM fromr = 0.03tor = 0.1m
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Figure 3. Numerical results (FEM) and analytic results (ANA) for the peat of acoustic quantities for
M =0.3, f =600Hz,k, ~ 15.6+5j. Airfromr =0tor = 0.03 m. XFM from» = 0.03tor = 0.1m
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Table 2. Erroi€? for M = 0.3, 600 Hz, k., ~ 15.6 + 5j

Quantity Pressure Radial Disp. Axial Disp.
Error (%)  1.69 1.43 2.57

4. CONCLUDING REMARKS

In the present work, Atalla’s mixed FEM formulation of Bioggjuation (assuming there is no
flow in the liner), was coupled with our mixed FEM formulatiohGalbrun’s equation. By tak-
ing advantage of the two formulations in pressure-dispteard, all coupling conditions can be
applied naturally. Finally, our coupling terms are symneednd quite similar to those obtained
with a classic Helmholtz’s coupling. Our numerical resshisw a very good agreement with the
analytic model and this is engaging to continue to a moreieghploise reduction benchmark.
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