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Abstract

The addition of small mass inclusions into the poro-elastic layer was found to create an increase
in insertion loss (IL) over a broadband frequency range, usually below 1000 Hz. In this paper,
results of two models: a simplified closed form approximation to the frame dynamics and a fully
couple finite element analysis, are compared to experimental results. The motivation is the large
computational effort that is required by the fully coupled 3-D finite element model of the poro-
elastic material makes optimization prohibitive in terms of time/computational power. Proof of
equivalency of the analytical approximation, the FEA model and experimental data allows the
former to be used in the optimization of inclusion design. Results from the fully coupled 3-D
model, an approximation to the Biot model, and an experimental investigation are compared
and discussed.

1. Introduction

This paper concerns a relatively new approach to improving transmission loss, the Heteroge-
neous Blanket (HG–blanket). Previous experimental work, [1] showed that a wide bandwidth
enhancement in the transmission loss could be achieved by adding many small mass inclusions
to a poro-elastic layer attached to a panel. Each of the mass inclusions behaves like a vibration
absorber so that there is an overall increase in the panel impedance over the bandwidth of the in-
clusions resonances. An equivalent single-degree of freedom stiffness was derived [2] from the
Biot-Allard equations, [3, 4]. The equivalent stiffness was validated by experimental measure-
ments. In this paper we extend the analysis to include a finite element model of the poro-elastic
layer.
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Figure 1. Development of the mass-inclusion con-
cept Figure 2. Schematic of the model of a plate with

foam layer and inclusions modelled as oscillators.

In 1977 Craggs proposed a finite element scheme for porous liners, however he neglected
the elasticity of the frame material. This is a valid assumption for many sound absorption ap-
plications but completely invalid for modelling the HG-blanket. Inclusions of fluid have been
considered by researchers in the geo-mechanics field such as Kostek, [5], however it was not
until 1994 that an elastic frame was considered. [6]. This let to a flurry of activity in finite el-
ement modelling of poro-elastic materials. The key players in the field being: Atalla [7, 8, 9],
Panneton [10],[11] and Kang [6, 12, 13].

Panneton and Atalla,[10] proposed an efficient method for solving the u−U finite element
formulation by linearising the frequency dependancy of the stiffness and damping matrices. This
is the approach followed in the model developed here.

The HG blanket evolved from the application of vibration absorbers to transmission loss
through fuselage and fairings, where a relatively low weight, high TL, and practical solution is
sort. Transmission through aircraft and rocket has been a subject for the application of active
control, adaptive passive control, ASAC etc. for many years [14, 15, 16]. The application of
vibration absorbers to the problem has received much attention and is reviewed by Kidner and
Wright [17] and by Sun [18].

Figure 1 illustrates the evolution of a traditional point absorber to a random collection of
masses embedded within a poro-elastic layer. The use of a single point absorber, Figure 1-a was
extended to multiple absorbers acting over a distributed space, Figure 1-b, an example of this is
work by [19]. Coupling between the absorber masses was then considered, as shown in Figure
1-c. This coupling has been discussed in work on the effective impedance of collections of
oscillators, by [20] and [21]. The extension to continuous elastic layer with embedded masses,
Figure 1-d comes from work by [22] and [15] on distributed vibration absorbers.

Figure 2 is a schematic of the combination of plate, foam layer and mass inclusions.
It shows the mass inclusions modelled as separate mass-spring oscillators. The stiffness and
damping of these oscillators is derived from the Biot equations in section 4.. It is assumed that
the mass inclusions do not couple to the acoustic field. The effect of the oscillators of the poro-
elastic layer is considered as a separate problem. The finite element approach solves the fully
coupled problem, and as such can be used to predict the effects of more complex geometries
and features such as macroscopic voids in the porous layer.
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1.1 Paper Structure

Following this introduction the physics of poro-elastic materials are reviewed and the finite ele-
ment method for analysis of porous mediums is introduced. The u−U approach used is outlined
and the MatLab model explained. In section 4. the wave approach to modeling is reviewed and
an equivalent stiffness and damping value obtained for a small element of porous material. The
equivalency to the FEA stiffness matrix is shown. The penultimate section is a discussion of the
results and the paper closes with the conclusions.

2. Review of poro-elastic material physics

A poro-elastic medium has two phases, a fluid and an elastic frame. Biot [23] derived the stress-
strain relationships as

σi = 2Nei + Ae + Qε, (1)

where i = x, y, z. The total volumetric strain of the frame, e is given by the divergence of the
displacement vector u . The fluid volumetric strain ε is given by the divergence of the fluid
displacement field U. N denotes the shear modulus and A is the first Lamé coefficient, defined
as A = νE/[(1 + ν)(1− 2ν)], where ν denotes Poission’s ratio and E is the Young’s modulus
of the frame material. Q is defined below.

Biot then defines the fluid stress, s, (or negative pressure) as:

s = Rε + Qe. (2)

Here R is a measure of the pressure required to force a portion of the fluid into the fluid–
frame aggregate while maintaining a constant aggregate volume, [23]. The constant Q relates
the volume changes of the fluid to that of the frame and is defined by Q/R = −ε/e.

To derive dynamic equations the inertial coupling between the fluid and the frame must
be defined. Biot derives the following expressions to accomodate this coupling:

ρ∗11 = ρ11 +
b

jω
ρ11 = ρs + ρa

ρ∗12 = ρ12 −
b

jω
ρ12 = −ρa

ρ∗22 = ρ22 +
b

jω
ρ22 = ρf + ρa

(3)

Each of the effective densities ρ11, ρ12 and ρ22 contribute to the inertial coupling as follows:
• The mass of the fluid that couples to the motion of the frame, −ρa;
• The effective moving mass of the frame, which is its actual mass plus the mass of the

fluid that moves with it, (ρ11 + ρa);
• The effective moving mass of the fluid, (ρ22 + ρa).

The starred quantities include the viscous damping effects modeled by a complex term b/jω.
ρa, the inertial coupling, is a function of the structural factor β, and the fluid density ρf .

ρa = (1− β)ρf

The structural density is ρs.
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The viscous losses represented by b are a function of the assumed pore geometry. There
are several models for this value. In this work the following is used [24]:

b(ω) = jωρfβ
2J1(λc

√
−j)

λc

√
−j J0(λc

√
−j)

(
1− 2J1(λc

√
−j)

λc

√
−j J0(λc

√
−j)

)−1

(4)

λc =

√
8ωρfβ

φχ
,

where χ is the flow resistivity, ω is the frequency in radians.

3. The finite element for poro-elastic materials

Panneton and Atalla [25] use a Lagrangian approach to develop the finite element equations for
a poroelastic element. It is first necessary to define the stress, strain, and displacement vectors:
σs =

[
σx σy σz τxy τyz τzx

]T
The previous stress vector is for the solid portion of the

poroelastic element which supports both normal and shear stresses. The following stress vector
is for the fluid portion of the element and can only have a normal stress which is equal to the
porosity multiplied by the applied force. σf =

[
−φp −φp −φp 0 0 0

]T
Where φ is the

porosity of the material and p is the pressure on the surface. There are six degrees of freedom
for each node on a poroelastic element and they represent the three cartesian co-ordinates for
the fluid and three cartesian co-ordinates for the frame. We will find that coupling equations
are necessary to allow these elements to be used with traditional solid and fluid finite elements
which each have three degrees of freedom. us =

[
usx usy usz

]T
uf =

[
ufx ufy ufz

]T

The strains ε are written in terms of the derivatives of the displacements. εs = [L] [us]and
εf = [L][uf ]Where [L] is the derivative operator.

Expressions relating the fluid and frame stresses to the strains are given in Equations (5)
and (6). These follow the form of Equations (1) and (2) in that they involve both frame and fluid
strains.

σs = Dsεs + Dsfεf (5)

σf = Dfεf + Dsfεs (6)

In the above equations Ds is determined from the coefficients A and N . Dsf is dependent on
the elastic coupling between the fluid and the frame, Q. Df is depends on R.

An energy balance in the form of a modified Lagrangian is used to obtain the equation
of motion for the poroelastic material. The standard Lagrangian equation had to be modified
to allow for a dissipation term. Expressions for the kinetic energy, strain energy, dissipation
energy, and external work are given in Equations (7-10).

Kinetic Energy:

dT =
1

2

(
ρ11u̇s

T u̇s + 2ρ12u̇s
T u̇f + ρ22u̇f

T u̇f

)
(7)

Strain Energy:

dU =
1

2

[
[Lus]

TDs[Lus] + 2[Lus]
TDsf [Luf ] + [Luf ]

TDf [Luf ]
]

(8)
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Dissipation Energy:

dD =
b(ω)

2
(u̇s − u̇f )

T (u̇s − u̇f ) (9)

Work Energy:
dW = uT

s (f − hfn) + huf
T fn, (10)

where f and fn are the force and the corresponding normal force respectively that act on the
external surface of the poroelastic material. The modified Lagrangian equation, modified to
accommodate dissipation is shown below. Where the modified Lagrangian is given by:

dT − dU

dü
− dT − dU

du
+

dD

du̇
=

dW

du
(11)

Where u = [usuf ]
T. The Lagrangian equation above can be integrated and rearranged to reveal

the equation of motion for a poroelastic element:(
−ω2

[
Mss Msf

Msf Mff

]
+ jω

[
Css(ω) Csf (ω)

Csf (ω) Cff (ω)

]
+

[
Kss Ksf (ω)

Ksf (ω) Kff (ω)

]) [
us

uf

]
=

[
Fs

Ff

]
(12)

In Equation (12), the mass matrix (M) is a function of the densities (ρ11, ρ12,ρ22) of the frame
and fluid, the damping matrix (C) is a function of the damping function(b(ω)), and the stiffness
matrix (K) is in terms of Ds, Df , and Dsf .

To simplify the computation Panneton introduces a low frequency approximations for the
damping and stiffness. This depends on characteristic dimensions that relate the pore size and
viscosity.

The finite element model was implemented in C++ using the LibMesh finite element
library [26]. The low frequency simplifications for the damping and stiffness terms as specified
by Panneton [10] were implemented. In the results presented a 1D model was created containing
10 elements. The element size was approximately 10mm. The mass inclusion was implemented
as an increase in density at the element of interest. A typical result for the input mechanical
impedance to the foam block is shown in Figure 3, it can be seen that the resonances vary from
95 to 200Hz.

4. Equivalent stiffness of a foam layer

Figure 5 shows the stresses and strains that can exist in a poro-elastic material. The motion of
the structure and the fluid is coupled. The stress in the x-direction in the frame, σx, is due to
both solid and acoustic strains as shown in Equation 1. The fluid stress is defined in Equation 2
To obtain an equivalent stiffness of a column of porous material both the structure and fluid is
considered. The force balance equation for the foam block shown in Figure 5 is

S(σx + σf ) = Keqεxlx (13)

where S is the area of the face, and lx is the length of the block. The equivalent homogeneous
stiffness, Keq is analogous to the stiffness of a rod given by EA/L.

In a porous medium, two longitudinal wave types can exist, each wave type travels in both
the structure and the fluid. The ratio of fluid to structural motion in each wave type is known
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Figure 3. Typical FEA prediction of the input
mechanical impedance to the 35×35×100mm
melamine block with an 8g mass at 50mm.
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Figure 4. Variation of resonant frequency of
an 8 gram mass in a melamine foam block
(35×35×100mm) as a function of the thick-
ness of foam beneath the mass. ◦ data points
from experiments. – Equivalent stiffness pre-
diction. � FEA predictions.

and so all the strains in the foam column can be written in terms of the structural strain. The
ratio of fluid to structural motion is

µ1,2 =
(A + 2N)k2

1,2 − ω2ρ11

ω2
12 −Qk2

1,2

(14)

Where k1,2 is the wavenumber of the type 1 and 2 waves. ρ11 = ρs − ρ12, the difference of
structure density and mass coupling, ρ22 = φρf − ρ12, the difference of fluid density, weighted
by porosity and the mass coupling. The mass coupling term ρ12 is a function of the porosity and
the tortuosity. Returning to the derivation of an equivalent stiffness; Rearranging Equation 13
and substituting for stresses using Equation 1-2 it can be expressed as follows

Keq =
S

lx

(
2N + A + Q((1− h)µ1 + hµ2) +

Q

(1− h)µ1 + hµ2

+ R

)
(15)

The contribution from each wave type is weighted by the porosity under the assumption
that the type one wave exists mainly in the structure and the type two wave exists mainly in the
fluid. It should be noted that this equivalent stiffness is frequency dependent. The stiffness of
a foam block also varies with thickness and so the resonant frequency of the mass inclusions
varies with their position in the foam. The resonant frequency of an inclusion was calculated as
a function of thickness of material beneath the inclusion and is plotted in Figure 4.

5. Comparrison of measured and predicted resonant frequencies using
experimental, equivelent stiffness and FEA results

5.1 Inclusion resonance frequency versus layer thickness

Figure 4 shows the variation in resonant frequency of a mass inclusion vs. layer thickness. The
solid line indicates the prediction based on the equivalent stiffness, the solid squares show the
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Figure 5. Stresses and strains in a block of foam

FEA result and the circles denote experimental measurements. It can be seen that there is very
good agreement between the experimental and equivalent stiffness models. The FEA prediction
also matches very well. The result of the simple one dimensional FEA model reinforces the
assumptions made in the closed form model. It should also be noted that the low frequency
approximations contained in the FEA solution do not effect the accuracy of the result.

6. Conclusions

The paper has presented a validation of an FEA and closed form model for the vibration of
mass inclusions within poro-elastic layers. It has been shown that the equivalent stiffness model
is validated by experimental results. A simple 1D FEA model that includes low frequency ap-
proximations of the porous parameters accurately models the phenomena.

The authors would like to thank the LibMesh open source FEA C++ library. This
project was partly supported by NASA grant #NAG-1-02053.
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[15] S. J. Estève and M. E. Johnson, “Reduction of sound transmission into a circular cylindrical
shell using distribute vibration absorbers and helmholtz resonators,” J. Acoust. Soc. Am., vol. 112,
pp. 2840–2848, 2002.

[16] C. R. Fuller and J. D. Jones, “Experiments on reduction of propeller induced interior noise by active
control of cylinder vibration,” J. Sound & Vibration, vol. 112, no. 2, pp. 389–395, 1987.

[17] R. I. Wright and M. R. F. Kidner, “Vibration absorbers:- a review of applaications in interior noise
control of propeller aircraft,” J. Vib. Con., vol. 10, no. 8, pp. 1221–1231, 2004.

[18] J. Sun, M. R. Jolly, and M. A. Norris, “Passive, adaptive and active tuned vibration absorbers -
a survey,” Transactions of the American Society of Mechanical Engineers, vol. 117, pp. 234–242,
1995.

[19] M. Brennan, “Vibration control using a tunable vibration neutraliser,” in Proc Instn Mech Engrs,
vol. 211 part C, pp. 91–108, 1997.

[20] S. M. Lee, “Normal vibration frequencies of a rectangular two-dimensional array of identical point-
masses,” J. Sound. Vib., vol. 45(4), pp. 595–600, 1975.

[21] D. M. Photiadis, “Acoustics of a fluid loaded plate with attached oscillators. part 1. feynman rules,”
J. Acoust. Soc. Am, vol. 102(1), pp. 348–357, 1997.

[22] P. Marcotte, C. Fuller, and M. Johnson, “Numerical modeling of distributed active vibration ab-
sorbers (dava) for control of noise radiated by a plate,” in Active 2002, 2002.

[23] M. Biot, “Theory of propagation if elastic waves in a fluid saturated porous solid. 1. low-frequency
range.,” J. Acoust. Soc. Am., vol. 28(2), pp. 168–178, 1956.

[24] D. L. Johnson, J. Koplik, and R. Dashen, “Theory of dynamics permeability and tortuosity in fluid-
saturated porous media,” Journal of fluid mechanics, vol. 176, pp. 379–402, 1987.

[25] R. Panneton and N. Atalla, “An efficient finite element scheme for solving the three dimensional
poro-elasticity problem in acoustics.,” J. Acoust. Soc. Am., vol. 101(6), pp. 3287–3297, 1997.

[26] “Libmesh, a c++ finite element library.” http://libmesh.sourceforge.net


	Introduction
	Paper Structure

	Review of poro-elastic material physics
	The finite element for poro-elastic materials
	Equivalent stiffness of a foam layer
	Comparrison of measured and predicted resonant frequencies using experimental, equivelent stiffness and FEA results
	Inclusion resonance frequency versus layer thickness

	Conclusions

