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Abstract

This paper presents the initial investigation of nonlinear control for a magnetic spring. The
combination of a magnet pair in repulsion and a magnet pair in attraction create a spring with a
quadratic force curve. At its nominal position, it is a marginally stable system that has interesting
vibration isolation properties. Non-linear control is shown to be effective in stabilising the
system.

1. INTRODUCTION

The performance of a vibration isolation table in attentuating disturbances from the ground is
governed in the first order by the stiffness of the primary supports. Higher stiffnesses are more
convenient to support large loads, but lower stiffnesses give better passive vibration suppression
into lower frequency ranges. In high precision contexts, a resonance frequency of less than 1 Hz
is often required, for which very soft pneumatic springs are typically used [1].

However, as the stiffness of a spring decreases its bulk increases, and there are practical
limits on how large the springs can grow. The use of more complex support structures is a
promising method of reducing the effects of low frequency disturbance noise when simply
reducing the stiffness of the basic spring supports becomes infeasible.

One approach is to use a mechanical linkage [2]. In the limiting sense, the ideal support
would have zero stiffness, in which displacement of the ground produces zero disturbance force
on the load. Zero stiffness can be achieved with mechanical supports, but only for local regions
of displacement. Since the zero stiffness property is not global, these devices are more accurately
said to have ‘quasi-zero stiffness’ (although the ‘quasi’ term is often omitted).

All zero stiffness systems are a combination of positive and negative stiffness nonlinear
springs. Others have shown clever arrangements of mechanical springs that achieve this [3–5],
while permanent magnets have also been used [6, 7] and will be used here.

Generally, the zero stiffness property only occurs at a point of marginal stability, and some
form of active control is required to keep the system stable at such an operating position. The
focus of this paper is to investigate nonlinear control techniques for this purpose.
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2. SYSTEM MODELLING

For the preliminary investigation, a single degree of freedom system is created with two pairs of
magnets to generate the superposition of positive and negative spring stiffnesses. A schematic of
the model is shown in Figure 1, in which vertical displacement, x, of the beam-tip constitutes
vibration that is to be suppressed. In order to restrict the motion to a single degree of freedom,
the magnet pairs are attached to a beam that is pinned at one end. The use of a large lever arm
results in motion that is almost completely constrained to the vertical; horizontal and rotational
displacements are negligible. A push-pull electromagnet pair acting on a central magnet is used
to apply control force to the system via coil current I .

Figure 1. Schematic of the nonlinear magnetic system. Hollow blocks denote magnets with polarisation
indicated by arrows. The centre magnet is encompassed within an electromagnet coil pair (blocks with
crosses), wound in opposite directions, to apply control forces to the magnetic spring to stabilise the
system. The frame around the system is rigid and attached to the ground.

2.1. Zero stiffness spring

The most simple form of the zero stiffness magnetic spring is the combination of a magnet pair
in repulsion (lower pair in Figure 1) and a magnet pair in attraction (upper pair in Figure 1).
The force versus displacement curve for this system can be described approximately by the
quadratic [6]

Fm = Km(x− x0)
2 + Fm0, (1)

where Km is the spring constant, Fm0 the load bearing capacity of the spring at zero stiffness,
and x0 the zero stiffness position due to

∂Fm

∂x

∣∣∣∣
x=x0

= 0. (2)

The spring constant Km and the load bearing capacity Fm0 are functions of the strength of
the magnets and the gaps between them. For application purposes, the spring must be capable of
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bearing a variety of loads at zero stiffness (Fg = −Mg for a range of M ), which requires that the
fixed magnet positions be adjustable. The mass being supported is assumed here to be constant.

Air resistance on the moving body and eddy currents induced by the permanent magnets
will induce damping effects that dissipate energy from the vibrating system. The overall damping
force, Fd, can be assumed to be viscous (and relatively small):

Fd = −Cdẋ, (3)

where Cd is the damping coefficient.

2.2. Actuator dynamics

The actuator is modelled as a simple dual-coil winding surrounding a permanent magnet. To be
specific, the force this coil will produce, Fc, will be a function of both position and current, but a
reasonable approximation for small displacements is

Fc = KcI. (4)

When driving the coil with a voltage amplifier, there will be electrical dynamics as well.
In terms of coil impedance L, coil resistance R, voltage gain G, and input voltage u, the coil
dynamics are given by

Lİ + IR +Keẋ = Gu, (5)

which also incorporates the back-emf term Keẋ from the moving magnet inside the coil.

2.3. Dynamic model

From the preceeding subsections, the complete model of the system is given by

Mẍ = Fg + Fm + Fc + Fd,

= −Mg +Km(x− x0)
2 + Fm0 +KcI − Cdẋ,

Lİ = Gu− IR−Kcẋ.

(6)

This system must be expressed in the following form in order to implement a standard backstep-
ping controller [8]:

ẋ1 = x2 + ϕ1(x1)
Tθ,

ẋ2 = b2x3 + ϕ2(x1, x2)
Tθ,

ẋ3 = b3u+ ϕ3(x1, x2, x3)
Tθ,

(7)

which is achieved by reformulating Equation (6) with [x1, x2, x3] = [x, ẋ, I] as

ẋ1 = x2,

ẋ2 = θ1 + θ2x1 + θ3x
2
1 + θ4x2 + b2x3,

ẋ3 = θ5x2 + θ6x3 + b3u,

(8)
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where

θ1 = Kmx
2
0/M − g + Fm0/M, θ3 = Km/M, θ5 = −Kc/L, b2 = Kc/M,

θ2 = −2x0Km/M, θ4 = −Cd/M, θ6 = −R/L, b3 = G/L,
(9)

and for constant parameters θ and nonlinear functions ϕi defined as

θ = [θ1, θ2, θ3, θ4, θ5, θ6]
T, (10)

ϕ1(x1)
T = [0, 0, 0, 0, 0, 0],

ϕ2(x1, x2)
T = [1, x1, x

2
1, x2, 0, 0],

ϕ3(x1, x2, x3)
T = [0, 0, 0, 0, x2, x3].

(11)

3. NONLINEAR CONTROL

The authors have previously demonstrated a simple backstepping controller that is able to stabilise
a system similar to that derived above, albeit without coil dynamics, for the purpose of vibration
isolation [6]. That controller showed in simulation the advantages of using backstepping control
with a zero stiffness system, but it required an explicit and exact model of the system to calculate
the control law. In turn, a very precise system identification would be required for control to be
possible; a more robust technique is therefore necessary for a practical implementation.

An approach without these limitations is the backstepping method using tuning functions
[8, §4.5.1], which is a general method to generate tracking control systems for systems (for any
number of states) of the form shown in Equation (7). The controllers thus created are adaptive
and do not require knowledge of the coefficients b2, b3 or θ. The Lyapunov-based design ensures
that the system states converge to their desired values and the unknown parameters converge to a
bounded set. This latter property means that using this technique is not appropriate for system
identification, since some parameter uncertainty is probable even after convergence.

When applying the tuning functions backstepping technique to Equation (7), the system of
‘error variables’ z1, z2, z3 is defined with respect to the setpoint y and ‘stabilising functions’ α1

and α2 (with α3 to appear):

z1 = x1 − y, z2 = x2 − α1, z3 = x3 − α2. (12)

The voltage controller can now be shown to be defined as the following:

u = %3α3, (13)

with stabilising functions2

α3 = −κ3z3x
2
2 − ϑ5x2 + ∂x1{α2}x2 − (x4

1 + x2
1 + x2

2 + x2
3 + 1)κ3z3∂x2{α2}2 . . .

+ ∂ϑ{α3}ϑ̇− x3ϑ6 − β2z2 − κ3z
2
2z3 − c3z3 − x2

3κ3z3 . . .

+ (ϑ1 + x1(ϑ2 + x1ϑ3) + x2ϑ4 + x3(β2 + 2κ3z2z3))∂x2{α2}+ %̇2∂%2{α2}, (14)

2The notation ∂x[y] ≡ ∂y
∂x is used for clarity.
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α2 = %2(−ϑ3x
2
1 − ϑ2x1 − x1 + y − ϑ1 − x2ϑ4 − c2z2 . . .

− (x4
1 + x2

1 + x2
2 + 1)κ2z2 + x2∂x1{α1}), (15)

α1 = −c1z1. (16)

In the controller above, c1, c2, and c3 are the controller gains, and κ2, κ3 are the nonlinear
damping gains. These gains can be adjusted to obtain a desirable controller response.

Parameter update laws for the estimates are shown in Equations (17) to (20), where ϑ
are the estimates of parameters θ, β2 and β3 are the estimates of b2 and b3, and %2 and %3

are the estimates of p2 = 1/b2 and p3 = 1/b3. % terms are used to avoid 1/β terms in the
controller/update laws, which become problematic if β → 0. Γ is the parameter update gain
matrix for ϑ, and γ2, γ3 are update gains for %2 and %3.

ϑ̇ = Γ[z2 − z3∂x2{α2}, x1(z2 − z3∂x2{α2}), . . .

x2
1(z2 − z3∂x2{α2}), x2(z2 − z3∂x2{α2}), x2z3, x3z3]

T, (17)

and

β̇2 = −γ2z3(−x2 + α1 + x3∂x2{α2}), (18)

%̇2 = −γ2z2α2/%2, (19)

%̇3 = −γ3z3α3, (20)

A characteristic of the tuning functions design is the tight coupling between the controller and
the parameter update laws. Note that α3 contains terms involving both ϑ̇ and %̇2. No derivatives
of the setpoint y appear, as it is assumed to be constant, but this restriction is not necessary in the
general form of the controller.

4. RESULTS

To demonstrate the performance of the controller described above, a selection of simulation
results are shown. When the system is initialised, the position of the fixed magnets needs to be
set in order for the magnet force curve to provide a nominal supporting force to place the spring
as close to the zero stiffness location as possible. For this to occur, Fm0 = Mg, where Fm0 is a
function of the gaps between the fixed and floating magnets.

However, this calibration cannot be performed in open loop, because the desired location
of the spring is in a position of marginal stability; therefore, the controller must be active while
the fixed magnet positions are adjusted.

The first simulation results demonstrate the stability and convergence properties of the
controller. The system parameters used in this simulation are shown in Table 1, with initial
parameter estimates 10% below their actual value. Adaptation gains γ2, γ3, and Γ were chosen
as the inverse of the orders of magnitude of the parameters they affect.

Figure 2a shows the states converging with setpoint following (x = x0). During parameter
convergence, the system approaches its desired position as the parameters converge to their
steady state values. Figure 2b demonstrates that the parameters do not converge to their exact
values, but to some nearby constant values instead.
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Table 1. System parameters for simulation results.

Mechanical
Parameter Value

M 0.01 kg
Km 100 N/m2

Fm0 0.8Mg

Cd 0.01 kg/s
x0 0.02 m

Electrical
Parameter Value

Kc 1 N/V
Ke 0.1 V/(m/s)
R 8 Ohm
L 0.001 H
G 1

Controller
Parameter Value
c1, c2, c3 10

κ2, κ3 1

γ2 0.01

γ3 0.001

Γ See below

Γ = diag(1, 0.001, 0.0001, 1, 0.01, 0.0001)
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θ1 = 2.04
θ2 = −400
θ3 = 10000
θ4 = −1
θ5 = −100
θ6 = −8000
b2 = 100
p2 = 0.01
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Parameters

(b) Parameter estimates, normalised with their exact
values (that is, ϑi/θi, β2/b2, ρi/pi are plotted).

Figure 2. Example control with system parameters as shown in Table 1.
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Once the parameters have converged and the magnet positions have been adjusted to achieve
the desired nominal supporting force, the system is simulated again with perturbation on Mẍ

introduced to demonstrate the behaviour under direct disturbance situations. For this simulation,
the nominal force Fm0 = 0.99Mg; the 1% difference imposes a small initial displacement offset.
The perturbation force on the isolated mass is Gaussian-distributed white noise with a variance
of 0.001 N.

The simulation results are shown in Figure 3, for two cases: with and without parameter
adaptation. Figure 3a can be seen to have a greater succeptibility to the noise disturbance
compared to Figure 3b. These results show that once the system has converged, it is desirable
to disable the adaptation (γ2, γ3 = 0, Γ = 0) to avoid perturbation in the system affecting the
control performance.
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Figure 3. Control at steady state position with direct disturbance, with and without parameter adaptation.
It is clear that noise upsets the performance of the parameter adaptation after convergence. See Figure 2a
for legend.

5. SUMMARY AND FUTURE WORK

This article has investigated the feasibility nonlinear control for a magnetic spring system. We
have shown that standard backstepping methods can be used to stabilise the system in the
presence of parameter uncertainties. However, we have not yet extended this work to look at
vibration isolation, which is the raison d’etre for looking at this quasi-zero stiffness system.

To investigate vibration isolation, additional states need to be added to the system to
represent the vibration of the ground. The tuning functions backstepping method accommodates
this additional complexity without trouble.

The current design uses full state feedback, which is not infeasible in practice with the use
of laser displacement and velocity sensors. Such sensors are expensive, however, and a useful
modification to the controller will be to add state observers (either velocity or displacement) in
order to reduce the number of sensors required.
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