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Abstract
We deal with the problem of direction and distance estimates of sound sources in 3-D space and

arrive at a new exact and direct algorithm from finite observations both in space and time. We first
derive a partial differential equation (PDE) which we call the sound source constraint (SSC). We
show that the general solution of the SSC-PDE is a diverging spherical wave from a point source
with arbitrary temporal waveform. The SSC enables the observer to determine the source location
(distance R and direction n) from local measurements of the wavefield. For the measurements
of wavefield, we consider weighted temporal integrals of arrayed microphone outputs in a finite
duration. We obtain exact formulae for localizing a single source from single weight measurements
and multiple sources from the combination of differently weighted measurements. We examine the
performance by simulating non-stationary complex multi-source environments.

1. INTRODUCTION

Directional sensing of sounds enables the localization of their sources in space. Sound source lo-
calization is one of the most important functions of auditory systems. It can aid in the separation of
signals from multiple sources and in their identification. Applications include the localization and
tracking of speakers in conference rooms, improved hearing aids having directional sensitivity, and
the realization of ears of mobile robots to endow them with localizing, separating, and communicat-
ing capability[1] even for moving sources and microphones[2]. Most localization methods depend
on two types of physical variables derived from sensor signals: time delay of arrival (TDOA) and di-
rection of arrival (DOA). DOA can be estimated by exploiting the phase difference at sensors and is
applicable to narrow band sources. Typical algorithms for multiple sources include ESPRIT[4] and
MUSIC[3] based on the subspace decomposition of covariance matrix of received signals. TDOA
is applicable to broadband source and relies mostly on on the accurate measurement of time delays
between pairs of microphones based on the cross correlation. Consistent triangulation of all delays
produce the source distribution[5, 6].
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However the problems of existing methods are in several aspects. Firstly they are based on
statistical quantities (covariance of arrayed sensors or correlation functions of received signals),
hence long observation duration is required for their stability. Otherwise the result becomes noisy
with numerous spurious sources. It also worsens the mixture condition of multiple sources both in
time and frequency, and makes incapable to use inherent granular structure in these domains of most
sound sources like human voice and environmental noise. Another problem is that no direct algo-
rithm is available for conventional types of microphone array. Iterations for global optimization or
an entire sweep of sound field are necessary. This requires the use of massive and costly computing
power, which is not suitable for implementation in most practical systems and applications.

The purpose of this study is therefore to develop an algorithm with following properties and
show its significance in complex, noisy, and reverberant environments being common in realworl-
dapplications. The first issue is on the usage of data. The algorithm should not rely on statistical
quantities among them but process the waveform data directly. The second issue is on the exact-
ness of algorithm for finite observation. By it, the use of any short observation duration is possible
without concerning errors due to theoretical approximation. The third issue is on the directness of
the algorithm. An explicit, closed-form algorithm provides the solution directly and efficiently. This
excludes massive and costly hardwares, and makes much easier its implementation in tiny sensor
nodes. In the next section, we begin with the fundamental equation in the form of PDE, and integrate
it to obtain an algebraic algorithm.

2. SOUND SOURCE CONSTRAINT PDE

Let the location vectors of the observation point P and an only one source S be r = (x, y, z) and
r0 = (x0, y0, z0), respectively. Let the sound pressure of the source be g(t). Then, from the general
spherically symmetric solution of the wave equation, the pressure on P is expressed as

f(r, t) =
1

|r − r0|g(t − |r − r0|
c

), (1)

where c is the sound velocity, and

|r − r0| = {(x − x0)2 + (y − y0)2 + (z − z0)2}1/2. (2)

Let the unit direction vector from P to S be n. The pressure gradient at P is expressed as

∇f(r, t) =
1

|r − r0|2 g(t − |r − r0|
c

) n +
1

c|r − r0| ġ(t − |r − r0|
c

) n, (3)

and the temporal gradient is

ḟ(r, t) =
1

|r − r0| ġ(t − |r − r0|
c

). (4)

Therefore, substituting Eq.(1),(4) to Eq.(3) to eliminate the source waveform g(t), we obtain an
equation of only the pressure and its gradient at the observation point P as [7, 8]

∇f(r, t) = { 1
|r − r0|f(r, t) +

1
c
ḟ(r, t)} n

= { 1
R

f(r, t) +
1
c
ḟ(r, t)} n, (5)
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where R ≡ |r − r0| is the distance from P to S. We hereafter call this equation the sound source
constraint (SSC) PDE. For the SSC-PDE, we can verify the following property.

Theorem 1 The general solution of the SSC is a spherical wave with arbitrary temporal waveform,
which is emitted from a source (R,n).

This theorem assures that the SSC-PDE provides both necessary and sufficient description of the
sound field that enables to determine the sound source. An only freedom left in the SSC-PDE is the
waveform. For the desired location information, it constrains it determinately. Therefore the next
subject is to obtain an algebraic equation that relates the measurement quantities and the source
location. This requires anyways an integration of the SSC-PDE.

3. INTEGRAL SSC-PDE AND ITS SOLUTION

We consider the integration in time axis. The gradient in spatial axis is left as it is. We assume they
are provided by one of the gradient measurement techniques [10, 11, 12, 13, 19, 20].

3.1 Integral form of SSC-PDE

Assume that the location of sound source is stationary during a finite observation interval
[−T/2, T/2] (T is the observation time e.g. 2ms, 2.9ms, or 32ms in the experiments of section
V). The sound waveform is arbitrary including its on/off. Then the SSC-PDE is satisfied anywhere
in [−T/2, T/2]. In this case, we can invoke the identity relation with an arbitrary weighting function
w(t) as

∇f − (
1
R

f +
1
c
ḟ)n = �0 ∀t ∈ [−T

2
,
T

2
]

↔
∫ T/2

−T/2
{∇f − (

1
R

f +
1
c
ḟ)n}w(t)dt ∀w(t), (6)

where the variables (r, t) of f are omitted for brevity. Actually, the weighted integral form in the
second line become identical with the SSC-PDE in the first line when we choose {w(t)} as a
complete set of function in [−T/2, T/2] and solving them simultaneously.

Using this relation, we can integrate the SSC-PDE in time axis as follows. First, we introduce
the complex exponential functions {e−jωt} as the set of weighting functions. Why we choose e−jωt

is readily clarified in the course of derivation. The measurement quantities are the weighted integrals
of the sound field at and near the observation point r as

gω(r) ≡
∫ T/2

−T/2

f(r, t)e−jωtdt. (7)

Integration of the SSC-PDE with the weight function e−jωt in [−T/2, T/2] yields

∫ T/2

−T/2

{∇f(r, t) − (
1
R

f(r, t) +
1
c
ḟ(r, t))n}e−jωtdt
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= ∇
∫ T/2

−T/2

f(r, t)e−jωtdt − n

R

∫ T/2

−T/2

f(r, t)e−jωtdt − n

c

∫ T/2

−T/2

e−jωt∂tf(r, t)dt

= ∇gω(r) − n

R
gω(r) − n

c

[
f(r, t)e−jωt

]T/2

−T/2
− jωn

c

∫ T/2

−T/2

f(r, t)e−jωtdt

= ∇gω(r) − n

R
gω(r) − n

c

[
f(r, t)e−jωt

]T/2

−T/2
− jωn

c
gω(r)

= �0,

where ∂t ≡ ∂/∂t for brevity. It should be noted that the weighted integral with the weight ∂te−jωt

becomes equal to the one with e−jωt except for the coefficient −jω by choosing the complex expo-
nential functions as the weight. This significantly reduced the number of measurement quantities.

Further more, the integral boundary term
[
f(r, t)e−jωt

]T/2

−T/2
can also be eliminated by choosing

ωT = 2nπ (n = 0, 1, 2, · · ·) which is actually the orthogonal complete condition of {e−jωt}. It is
because

[
f(r, t)e−jωt

]T/2

−T/2
= f(r, T/2)e−jπn − f(r,−T/2)ejπn

= (−1)n(f(r, T/2) − f(r,−T/2))

= (−1)n
[
f(r, t)

]T/2

−T/2
,

which shows the integral boundary term for all weight frequencies ω = 2nπ/T (n = 0, 1, 2, · · ·)
are equal except for the sign sn ≡ (−1)n. Therefore we obtain a complex vector equation

∇gω(r) = {( 1
R

+
jωsn

c

)
gω(r) +

sn

c

[
f(r, t)

]T/2

−T/2
}n (8)

with unknown variables n, R,
[
f(r, t)

]T/2

−T/2
.

We call this equation the (temporal) integral form of sound source constraint (iSSC). The
iSSC, as well as the SSC-PDE, provides an exact relation to determine the source location. Fur-
thermore, it provides an algebraic relation for a direct solution based on the weighted integral mea-
surements in ever so a small interval [−T/2, T/2]. Indeed the weighted integral is the well-known
Fourier series coefficient, but no smooth window function (except for the do-nothing window) is
required to obtain them.

3.2 Linearized algorithm

Since the iSSC has 2 + 1 + 1 = 4 non-observable degrees of freedom (dof) whereas the number
of independent equations are 6 or 4 for 3-D or 2-D gradient measurement of ∇gω(r), we can
essentially solve for the the source location using only one complex vector equation for a single
weight frequency ω.

However, Eq.(8) is nonlinear for R,
[
f(r, t)

]T/2

−T/2
and n because of their multiplications

involved. To obtain rapidly an initial guess, desired is the linearization of Eq.(8) based on the exten-

sion of unknown variables into n/R,n/c,n
[
f(r, t)

]T/2

−T/2
. In this case, the number of unknowns

is 3 + 3 + 3 = 9 for three-dimensional (3-D) gradient measurement and 2 + 2 + 2 = 6 for 2-D
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gradient measurement. This means two frequencies are sufficient for both cases to localize a single
source.

Two simple cases are the use of DC frequency and adjacent frequency as one of the paired
frequencies. For the DC frequency case, since s0 = 1, it follows that

∇g0(r) = { 1
R

gω(r) +
1
c

[
f(r, t)

]T/2

−T/2
}n

hence, eliminating
[
f(r, t)

]T/2

−T/2
, we obtain simply as

∇(gω(r) − sng0(r)) = { 1
R

(gω(r) − sng0(r)) +
jω

c
gω(r)}n. (9)

For the use of adjacent frequencies ω1, ω2, it follows that

∇(s2gω1 − s1gω2) = {s2

R
gω1− s1

R
gω2 +

jω1s2

c
gω1− jω2s1

c
gω2}n, (10)

where s1, s2 are the values of sn for ω1, ω2 respectively. In both equations, the integral bound-
ary terms are eliminated and n/R,n/c can be solved directly. Succeeding nonlinear least squares
estimation from n/R,n/c (4 dof) to R,n (3 dof) reduces the noise and improves the accuracy.

4. FINE GRAIN LOCALIZATION IN TIME AND FREQUENCY

Most established methods for the multiple sound source localization, e.g. the eigenspace methods[3,
4], require long observation time to obtain narrow frequency bands and well-converged statistical
quantities, which can reduce significantly the temporal resolution. Recently, another approach ap-
pears that relies on the time-frequency sparseness of sound power distributions to separate their
sources. For example, the power of speech sounds is concentrated on some fragments of the time-
frequency domain because of the harmonic structure, formants, glottal closures, etc. Where the
source signals have sparseness, they are rarely overlapped thus one source is only active almost ev-
erywhere. This means in a small time-frequency, i.e. a grain, single source localization is sufficient.
Accumulation of those results yields the multiple localization with the finest granularity both in
time and space.

One important point of this approach is that the nature of sparseness can change source by
source. For impulsive sounds like mechanical noise, high temporal resolution (short frame length)
is appropriate. Some kind of slowly changing periodic noise are, however, isolated well by a narrow
band analysis (long frame length). In the short time Fourier transform (STFT) analysis for speech,
the optimal frame length is about 1024 sample for the 16kHz sampling frequency[21] because of
its moderately changing nature. The PDE-based framework that provides always an exact formula
irrespective of the length of analysis frame is therefore suitable inherently for the sparseness-based
multiple source localization. To adjust the time-frequency resolution to the target signal, we can use
the following relations

∆ω = 2π/T, Ω = 2π/∆t, (11)

where T is the time resolution of time-varying spectra (observation interval), ∆ω is the frequency
resolution, and Ω is the maximal analysis frequency of sounds.
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Figure 1: Two experimental setups and the color samples for display of results.

2 2.2 2.4 2.6 2.8 3
0

1000

2000

3000

4000

5000

6000

7000

8000

times [s]

fr
eq

ue
nc

y 
[H

z]

2 2.2 2.4 2.6 2.8 3
0

1000

2000

3000

4000

5000

6000

7000

8000

times [s]

fr
eq

ue
nc

y 
[H

z]

(a) 512 points STFT (T =32ms) (b) 32 points STFT (T =2ms)

Figure 2: The estimated source direction maps in time-frequency plane for (a) setup A with the 512 points
(32ms) STFT, and for (b) setup A with the 32 points (2ms) STFT. The source direction in each grain is
indicated by a color shown by Fig.2 left circle.

5. NUMERICAL EVALUATION

Fig. 1 shows simulated two environments for experiments of sound source localization. In the setup
A, four sources are located in the same distance and the different directions. While in the setup B,
two sources are located in the different distances and the same direction. In both of them, source
signals were different speech utterances sampled by 16kHz. Spatial gradients were obtained by the
difference of observed signals at 5cm-spaced points. The sound source direction and distance were
estimated at every time-frequency bin by our method. For each setup, narrow band and wide band
analysis were examined.

Fig. 2(a) and Fig. 2(b) show the estimated source directions for the setup A as color maps.
They were obtained through 512 or 32 points STFT, respectively. Mainly, due to the harmonic
structure in the narrow band analysis, or the temporal pitch structure in the wide band analysis, the
energies of the speech utterances are sparsely distributed and rarely overlapped. Thus, in the two
figures, four colors corresponding to the four sources are clearly dominant, which indicates that
the sources are successfully localized. Apart from differences of time and frequency resolutions,
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the estimated directions are almost consistent in the two figures. Fig. 3(a) and Fig. 3(b) also show
the estimated distances for the setup B in the same way. It illustrates that the discrimination by the
source distance is well performed.
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Figure 3: The estimated source distance maps in time-frequency plane for (a) setup B with the 512 points
(32ms) STFT, and for (b) setup B with the 32 points (2ms) STFT. The source direction in each grain is
indicated by a color shown by Fig.2 right bar.

Actually, the optimal time and frequency resolution for the sparse representation depends
on statistical properties of target, noise, or surrounding environment like reverberation. However, in
the conventional sparseness-based localization, the high frequency resolution is essential to estimate
time-delay from phase difference, which limits the performance of the sparseness-based localiza-
tion. While in our method, arbitrary resolution is allowable as shown in this experiments because
of the rigorous formulation of finite observation. The advantage should yield the capability of the
robust localization in the real environment.

6. SUMMARY

We proposed a novel algorithm of sound source localization with following properties: 1) use of
not statistical but wideband waveform data directly, 2) exactness of algorithm for any finite and
short observation, and 3) directness of the algorithm without iterations or DOA sweeps. We exam-
ined the algorithm with numerically simulation and an actual data taken in a room with significant
reverberation.
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