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Abstract 
 
A model to predict the acoustic signature of a submarine resulting from the radial vibration of the 
hull under axial excitation is presented. The simplified physical model of the submarine hull 
includes complicating effects such the presence of bulkheads, end enclosures, ring stiffeners and 
fluid loading due to the interaction with the surrounding medium. Under an axial symmetric force, 
only the ‘breathing’ modes of the cylinder corresponding to the n=0 circumferential modes are 
excited. To show the sound radiation due to the higher order n≥1 modes, a point axial force acting 
at one end of the shell has been considered. At low frequencies, the structural wavenumbers are 
generally subsonic. However, due to the finite cylinder, the wavenumber spectrum is a 
convolution of the spectrum of an infinite structure and a window generating radiation by means 
of the presence of supersonic components. The effect of the bulkheads on the structural and 
acoustic responses of the hull is also presented. 

1. INTRODUCTION 

Cylindrical structures are widely used in many engineering applications, namely, aircraft 
fuselages, piping systems and shells of maritime vessels. Vibration generated in these structures 
can generate fatigue and significant noise levels. Hence the study of the dynamic behaviour of 
such structures is of great importance. Vibrational modes of a submerged hull are excited from the 
transmission of fluctuating forces through the shaft and thrust bearings due to the propeller 
rotating in an unsteady fluid. These low frequency vibration modes of the hull can result in a high 
level of radiated noise. The focus of this work is to investigate the structural and acoustic 
responses of a submarine hull under axial excitation. Previous work has concentrated on the n=0 
axisymmetric breathing modes [1]. However in reality, the excitation of the hull from the 
propulsion system is not perfectly symmetric, resulting in excitation of both the n=0 breathing 
modes and higher order circumferential n ≥1 modes. The n ≥1 modes can be efficient sound 
radiators due to the nature of the structural waves being mainly flexural. 

2. DYNAMIC MODELLING OF A SUBMERGED HULL 

To describe the low frequency dynamic response of a submarine, the hull has been modelled as a 
thin walled finite cylindrical shell. Various influencing effects such the presence of bulkheads, end 
enclosures, ring stiffeners and fluid loading due to the interaction with the surrounding medium 
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are included in the dynamic model. Many investigators (Love, Flügge, Timoshenko and others) 
have developed differential equations for a thin cylindrical shell that arise from small differences 
in the formulation of the strain-displacement relationship. These differential equations have been 
summarised by Leissa [2]. Whilst the simplest equations of motion are the Donnell-Mushtari, the 
Flügge equations are more accurate at low frequencies and have been used in this work. The 
equations of motion are given in terms of the axial u, circumferential v, and radial motion w. As 
shown in Fig. 1, u, v and w are the orthogonal components of displacement in the x, θ and z 
directions, respectively. a is the mean radius of the cylindrical shell and h is the shell thickness. 
 

 

Figure 1. Coordinate system for a thin walled cylindrical shell. 

In order to increase stiffness and strength and to reduce weight, the hull is reinforced with 
regularly spaced ring stiffeners. The effect of rings can be considered by averaging their properties 
over the surface of the shell. This method was originally derived by Baruch and Singer [3]. 
Ruotolo [4] showed that for stiffened cylinders, the Donnell-Mushtari can lead to very inaccurate 
results compared with the Flügge equations. The equations of motion for a stiffened cylindrical 
shell using the Flügge theory given by Rosen and Singer [5] have had extra terms added to take 
into account the fluid loading, internal structure and on-board equipment, and are given by the 
following 
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β is the thickness parameter, c is the longitudinal wave speed, E, ρ  and ν  are respectively the 
Young’s modulus, density and Poisson’s ratio. The ring stiffeners have cross sectional area A, b is 
the stiffener spacing and z is the distance between the shell mid-surface and the centroid of a ring. 
G is the shear modulus, I is the area moment of inertia of the stiffener about its centroid and J is 
the polar moment of inertia of the cross sectional area. In Eq. (3), p is the fluid loading acting 
normal to the cylindrical surface and can be expressed in terms of an acoustic impedance [6] 
 

))(,(),( ff mjrxwxp ωθθ −= &                (26) 
 

fm  and fr  are respectively the reactive and resistive components of the impedance that introduce 
mass-like and damping-like effects. Their values are obtained using a standing wave 
approximation [6]. In Eqs. (8) and (9) eqm  represents the equivalent distributed mass of the 
internal structure and on-board equipment. In addition, the main ballast tank and casing have been 
taken into account by adding distributed masses around the circumference at each end. The 
cylindrical hull is closed at both ends and separated into three compartments by means of 
bulkheads. A schematic diagram of the modelled hull is shown in Fig. 2.  
 

 
Figure 2. Schematic diagram of the hull. 

 
The general solutions to the equations of motion given by Eqs. (1) to (3) can be written as [7] 
 

tjjkx enUetxu ωθθ −= )cos(),,( ,   tjjkx enVetxv ωθθ −= )sin(),,(             
 

                                            tjjkx enWetxw ωθθ −= )cos(),,(                  (27-29) 
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These solutions represent a wave travelling in the axial direction and standing with n nodal lines in 
the circumferential direction. k is the axial wavenumber. Substituting the general solutions into the 
differential equations of motion results in a dispersion equation in k and ω. For each value of k, the 
dispersion equation gives three different natural frequencies associated with flexural, extensional 
or torsional waves, which in turn are called waves of first, second and third class, respectively [8]. 
The smallest frequency represents primarily radial motion and the two other roots represent either 
primarily longitudinal or circumferential motion. However, at low frequencies, it is difficult to 
distinguish between the wave types because the vibrational behaviour of the shell becomes 
complex due to increased curvature of the wall relative to the wavelength of the shell. An 
exception is given by the n=0 mode, where the lowest frequency represents primarily axial 
motion.  

Substituting the general solutions given by Eqs. (27) to (29) into the equations of motion 
results in three linear equations in terms of U, V and W, that can be arranged in matrix form as 

0Au = , where [ ]TWVU=u  contains the unknown wave amplitudes and T is the transpose. 
For a non-trivial solution, the determinant of the matrix A must be zero. The expanded 
determinant results in an eighth order equation in k. Since the characteristic equation is a function 
of the fluid loading parameters fm  and fr  whose values depend on k, a numerical solution is 
required to determine the axial wavenumbers. For each value of ki (i=1 to 8), the axial and 
circumferential amplitude ratios can be obtained as iii WUC /=  and iii WVG /= , respectively. For 
harmonic motion, the complete solutions are given by 
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The bulkheads and end enclosures have been modelled as thin plates with bending and in-plane 
motion. The equations of motion are given in ref. [7] and the general solutions for the bending pw  
and in-plane, pu  and pv , motions can be written as 
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pLk  is the plate bending wavenumber and pTk , pBk  are the wavenumbers for in-plane waves in the 

plate [7]. nJ , nI  are respectively Bessel functions and modified Bessel functions of the first kind. 
The dynamic response of the hull is expressed in terms Aj and Bj ( 2,1=j for each plate) and Wi 
(i=1 to 8 for each section of the hull) for a total of 40 unknown coefficients. The 
continuity/equilibrium equations at the shell and plate junctions leads to 40 equations that can be 
arranged in matrix form FBX = , with X  the vector of unknown coefficients and F  is a vector 
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containing external forces. For given external forces, the wave amplitudes for each value of n can 
be found by FBX 1−= . 

3. RESULTS OF THE STRUCTURAL RESPONSE 

Numerical calculations were performed on a ring stiffened steel cylinder of 3.25 m radius, 40 mm 
hull plate thickness, 45 m length, and with two evenly spaced bulkheads of thickness 40 mm. The 
stiffeners have a rectangular cross-section of base 80 mm and height 150 mm, and are separated 
by 0.5 m. The cylinder was submerged in water of density 1000 kg/m3. A neutrally buoyant 
condition was maintained by using distributed masses of 100 tonnes at each end while a 
distributed mass of 1000 kg/m2 on the shell was used to take into account the on-board machinery. 
Internal structural damping was included in the analysis by using a structural loss factor of 0.02. 
The shell was axially excited by an external point force tjexFtxF ωθδδθ −= )()(),,( 0  on one end of 
the cylindrical shell, where a unity force amplitude ( 10 =F ) has been used. Figures 3 and 4 
respectively represent the frequency response function (FRF) of the axial and radial displacements 
at the drive point location (x=0). In each figure, the FRF for the n=0 breathing modes and 
including the higher order modes are shown. In both figures, it is evident that the higher order 
modes, in particular the n=1 bending modes, significantly contribute to the low frequency 
structural responses. From the FRF of the radial displacement, it is evident the necessity to 
consider the n≥1 modes as their flexural influence is strong and thus greatly contribute to the 
sound radiation. At low frequencies, modes corresponding to n≥3 are negligible. 

 

 
Figure 3. Frequency response function of the hull axial displacement at x=0. 

 

 
Figure 4. Frequency response function of the hull radial displacement at x=0. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

6 

4.  SOUND RADIATION MODEL OF THE SUBMARINE HULL 

The sound pressure in the far-field due to the radial motion of the hull is given by [6] 
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ŵ&&  is the spatial Fourier transform of the radial acceleration. fρ  is the density of the fluid, fk  is 
the acoustic wavenumber and nH ′  is the derivative of the Hankel function of order n. Definition of 
the angles φ and θ are shown in Fig.5. 

 

Figure 5. Definition of coordinate system for the field point. 
 . 

An acoustic transfer function for each value of φ is defined as  
F

rp
rH s

),(max
),( 20

ϕ
ϕ πθ≤≤=  where F is 

the axial point force applied at one end of the shell described previously. Figure 6 shows the FRF 
of the acoustic transfer function, again for the n=0 modes and including the higher order modes. 
The strong influence of the n=1 modes is clearly shown while the n=2 modes fall in the subsonic 
region and thus are not efficient sound radiators. 

 

 
Figure 6.  Frequency response of the acoustic transfer function at r = 1000 m and φ = 0. 

The spatial Fourier transform of the radial velocity shows the effect of the finite structure 
contributing to the radiated sound pressure. Discontinuities associated with the finite cylinder ends 
have resulted in a scattering of the energy from subsonic to supersonic wavenumber components 
[9]. Figure 7 shows the radial velocity level of the hull as a function of the structural wavenumber 
at the resonant frequency of 67 Hz. For a speed of sound for water of 1500 m/s, the corresponding 
acoustic wavenumber is 0.28 m-1. As observed in Fig. 6, this frequency corresponds to a very high 
peak in the acoustic response which is attributed to the n=1 mode. Comparison of the magnitudes 

r 

θ
φ 

p(r,θ,φ) 
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in Fig. 7 shows that the supersonic wavenumber components for the n=1 modes in the supersonic 
region ( fkk < ) are significant and thus correspond to radiating wavenumber components. 
 

 
Figure 7.  Radial velocity spectrum at 67 Hz for the n=0 and n=1 modes. 

5. EFFECT OF THE BULKHEADS ON THE HULL RESPONSES 

It is interesting to focus on the effect of the bulkheads on the structural and acoustic responses of 
the hull. In Fig. 8 it can be observed that the bulkheads create a phenomenon of grouping for the 
n=2 modes, while the resonant frequencies of the breathing and bending modes are the same as 
before. 
 

 
Figure 8.  Frequency response function of the hull radial displacement at x=0. 
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Figure 9 shows the sound radiation with and without the bulkheads. As expected, the radiated 
sound pressures in both cases are nearly the same. This is because the presence of the bulkheads 
affects only the n≥2 modes that are not efficient sources of sound (as discussed in Fig. 6).  
 

 
Figure 9. Frequency response of the acoustic transfer function at r = 1000 m and φ = 0. 

6. CONCLUSIONS 

A model to describe the dynamic behaviour of a submarine hull with several complicating effects 
such ring stiffeners, bulkheads, end enclosures and fluid loading, under axial excitation has been 
developed. The sound radiation due to the radial motion of the hull has been presented. Results 
show that it is necessary to include higher order circumferential modes at low frequencies in order 
to obtain the total radiated sound pressure of the hull. The effect of the bulkheads on the structural 
and acoustic responses of the hull has also been presented, showing influence on modes of order 
n=2. 
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