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Abstract 
 
This paper introduces a technique for extracting the wavenumbers and displacement 
amplitudes from experimental vibration measurements of a plate simply supported along two 
parallel edges. The displacement field at any location on the plate can be predicted from the 
extracted wavenumber and amplitudes used in conjunction with an analytical waveguide-
based model. Using simply supported boundary conditions along two parallel edges of the 
plate, the structural response can be described by a combination of a modal and travelling 
wave solution. A technique is described whereby the measured response is separated into 
modal components using spatial Fourier transforms. The travelling wave solution is then 
extracted from each of these modal components using an iterative least-mean-square 
technique to identify the wavenumbers and wave amplitudes. The technique is applied to 
vibration measurements obtained experimentally for a single plate under broadband 
excitation. The waveguide properties from the experimental data are successfully extracted 
and the errors involved in applying this technique to experimental results are discussed. This 
method can be used to experimentally determine plate properties, vibrational responses such 
as energy levels and in the calculation of transmission coefficients for finite coupled 
structures.  

1. INTRODUCTION 

The analytical waveguide method has been extensively used to model the dynamic responses 
of beam [1], plate [2-4] and cylindrical [5] structures. Two important parameters in this 
method are the wavenumbers and wave amplitudes from which the displacement at any 
location on the structure can be calculated. Wave-based models have also been used to 
determine other quantities of built-up structures such as energy flow [2] and transmission 
coefficients [6]. 

This paper focuses on determining structural wave amplitudes and wavenumbers from 
response measurements. Experimental data has been used with waveguide based models to 
determine the Young’s modulus and damping in beams [7-11]. Grosh and Williams [7] used a 
method originally developed for radar and sonar applications to determine the flexural 
wavenumber of a beam. A least-mean-squares (LMS) technique was then used to determine 
the wave amplitudes. McDaniel et al. [8] highlighted that the method employed by Grosh and 
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Williams [7] was sensitive to noise and requires a large number of measurement locations. 
They demonstrated a method of extracting the wave amplitudes of a beam from experimental 
data collected under impact loading. This method uses a wave-based analytical expression for 
the beam’s displacement to determine the wave amplitudes from a set of measured 
displacements based on an estimate of the wavenumber. The wavenumber was varied such 
that the difference between the displacements obtained using the extracted wave amplitudes 
and the measured data was minimised using an iterative LMS approach. Using this technique, 
the structural damping could be estimated at any frequency, whereas in other methods, 
damping in structures had been calculated at natural frequencies using a bandwidth approach. 
McDaniel and Shepard [9] further investigated the above method using spatially sparse data 
points and found that the method was still robust. Interestingly, they found that better results 
could be achieved using random measurement spacing rather than the traditional fixed width 
spacing required by Fourier analysis. Liao and Wells [11] presented a variation on the 
aforementioned technique in order to minimise the variation in the wave amplitudes predicted 
across the plate. This was achieved by collecting the data using a laser vibrometer whereas the 
previously mentioned work used either accelerometers or strain gauges.  

In this paper, the wave amplitude and wavenumber extraction techniques presented in 
refs. [8] and [9] are extended to plates that are simply supported along two parallel edges. The 
dynamic response of the plate is modelled by a modal solution across the width of the plate 
and a travelling wave solution along the length of the plate. A spatial Fourier transform can be 
used to decompose the displacement field measured across the width of the plate into modal 
components. The parameters of the travelling wave solution are then obtained using the wave 
extraction techniques. The technique is applied to experimental response data measured from 
a rectangular plate. The capability to determine the wave amplitudes and wavenumbers from 
experimental data allows the vibratory field to be extrapolated to any location on the plate. 
The wave amplitudes determined using this method enables the transmission coefficients 
between coupled structures to be experimentally obtained by using the wave amplitudes to 
evaluate the directional energy flow [6]. In addition, using this method to develop an 
interpolated model of the displacement field would allow the average energy levels in a plate 
to be calculated from sparse data measurements. 

2. THEORY 

2.1 Analytical waveguide method 

The equation of motion for the flexural motion of a plate, w , under a point force excitation at 
a location ),( oo yx  is given by [12]: 
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where 224 ∇∇=∇  and 22222 // yx ∂∂+∂∂=∇  is the Laplace operator. )1(12/ 23 υ−= EhD  is 
the plate flexural rigidity, where E is the Young’s modulus, υ  is Poisson’s ratio, ρ  is the 
density, h  is the plate thickness. Damping is introduced into the system using a complex 
Young’s modulus given by )1(ˆ ηjEE +=  where η  is the structural loss factor. The flexural 
displacement of a plate with two parallel simply supported edges results in a modal solution 
in the −y direction and a travelling wave solution in the −x direction. A general solution for 
the flexural displacement is given by [3]: 
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where mqA ,  are the wave displacement amplitudes. The subscripts q  and m  respectively refer 
to the wave index and mode number. The first two waves of amplitude mA ,1  and mA ,2  
represent travelling waves in the positive and negative −x directions, respectively. The last 
two waves are respectively evanescent waves in the positive and negative −x directions. 

yy Lmk /π=  is the wavenumber in the −y direction. 22
ypx kkk −=  and 22

ypn kkk +=  
are the wavenumbers along the −x direction for the propagating and evanescent waves, where 
the flexural wave number of the plate is given by 4 2 / Dhk p ρω= . Since the plate flexural 

displacement is time harmonic with radian frequency ω, the time dependent term tje ω  is 
omitted in the proceeding analysis. 

2.2 Wave extraction technique 
 

A total of SR×  response measurements are taken in a grid pattern on the plate. For each set 
of S evenly spaced measurements across the width of the plate ( −y direction), the discrete 
Fourier transform is applied to the displacement given by Eq. (2), thereby removing the 
contribution of the function )(, ymyφ  and separating the response along the −x direction into 
its individual modal components, )(, rmx xφ . The discrete Fourier transform is given by [13]: 
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where rx  is the rth measurement from R locations in the −x direction and sy  is the sth 
measurement from S locations in the −y direction. The discrete Fourier transform produces a 
solution of the form )/sin()/cos()( ,, SsmjZSsmZsz mimagmrealm ππ += . The –j term in Eq. 
(3) converts the result into a real sine rather than cosine form as is required by the form of Eq. 
(2). In this paper, the discrete Fourier transform is performed using the MATLAB FFT 
function and the result is then multiplied by –j to obtain )(, rmx xφ .  

Once )(, rmx xφ  has been determined using Eq. (3) for each mode m , a combination of a  
LMS technique and iterative process is used to estimate the wavenumbers and amplitudes for 
the plate. The error function used for the LMS fit is given by: 
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where )(, r

e
mx xφ  is the LMS estimate of the measured )(. rmx xφ  at the rth measurement location. 

The square of this function needs to be minimised for all the measurement points such that 
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∑=
r

rT 2ε , where T  is the total error function. The total error function is differentiated with 

respect to each of the wave amplitudes and is then set to zero to find the minimum error. It 
can be shown that the LMS wave amplitudes are given by: 
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The LMS function in Eq. (5) is dependent on the wavenumbers xk  and nk  of the plate but can 
be described by a single unknown corresponding to the plate flexural wavenumber, pk . An 
iterative approach is used to find pk  such that the error is again minimised using the total 
error function. In this study, the MATLAB function FMINSEARCH was used to iteratively 
search for the optimal value of the wavenumber. Fig. 1 gives details the iterative process used 
to determine the wave number and amplitudes for the plate. 

Once the plate flexural wavenumber is determined and assuming that the density and 
Poisson’s ratio are known, the properties of the plate can be found using the complex Young’s 
modulus, which is given by 2422 /)1(12ˆ hkE pρωυ−= . The Young’s modulus and damping 

are respectively given by )ˆRe(EE =  and )ˆRe(/)ˆIm( EE=η  [9]. 
 

 

 
 

Figure 1. Process for extracting wavenumbers and amplitudes from experimental data. 

3. RESULTS 

Experimental results are presented for a flat plate with dimensions of length xL =480 mm, 
width yL =1100 mm and with a thickness of h =2 mm. The plate is of aluminium with an 
estimated Young's modulus of E =71 MPa, density ρ =2800 kg/m3 and Poisson’s ratio 
υ =0.3. The damping loss factor is estimated to be η =0.001. All coordinate locations are in 
mm. The aluminium plate is supported between two ‘V-shaped’ pieces of aluminium (see Fig. 
2) to imitate simply supported boundary conditions. The plate was excited at 
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)192,300(),( =oo yx  using pseudo random noise. An LDS V203 shaker used to drive the plate 
via a thin wire stinger was vertically mounted on the plate as shown in Fig. 2 to simulate point 
force excitation. An Endevco 2312 force transducer was used to measure the input force. The 
responses were measured using a B&K Type 4393 accelerometer attached to the plate with a 
thin layer of wax. The signals detected by the accelerometer and force transducer were 
conditioned by the B&K Type 2635 charge amplifiers and the results were processed by a 
B&K Pulse signal analyser.  

 

                
 

 
Figure 2. Photograph of the experimental rig showing details of the simply supported boundaries.  

 

           (a) 
 

       (b) 
 
Figure 3. Wavenumbers extracted from experimental data: predicted wavenumber (--------) and 

experimentally extracted wavenumbers for mode m=1 (———) and mode m=2 (— · —). 
(a) Raw data; (b) 50 Hz moving frequency band averaged. 

 
The plate flexural wavenumbers extracted from the experimental results are shown in Fig. 3. 
Data is presented above 50 Hz as below this frequency the coherence was poor. Figure 3(a) 
shows the predicted wavenumber based on the estimated Young’s modulus and damping 
compared to those extracted from the experimental result. As can be seen from this figure, the 
general trend of the wavenumbers extracted for both the m=1 and m=2 modes follows the 
predicted values reasonably well. In Fig. 3(b), the extracted wavenumbers have been averaged 
using a 50 Hz moving frequency averaging band and the resulting wavenumbers are shown to 
very closely match the predicted wavenumber.  
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There are distinct peaks in the experimentally extracted wavenumbers that significantly 
deviate from the predicted values. The reason for these discrepancies is attributed to the mass 
loading introduced by the accelerometers at each measurement location. Due to this mass 
loading the natural frequencies for some measurement locations have been shifted such that 
some of the measurements on the plate have been taken prior to resonance and others after 
resonance. There is a significant phase change in lightly damped structures associated with 
resonance, thereby altering the dynamics of the plate for each measurement location. This 
introduces significant error when considering the shape of the plate at a particular frequency 
that is close to resonance. This phenomenon is shown in Fig. 4, where the acceleration field is 
shown for two frequencies. Figure 4(a) shows the acceleration field measured just prior to 
resonance, while Fig. 4(b) shows the acceleration field measured very close to resonance. In 
theory Fig. 4(a) and 4(b) should have very similar shapes as the same mode is dominating the 
response at both frequencies (see Fig. 4), but the measured shapes are very different. This is 
because the phases of some points in Fig. 4(b) are 180º out of phase with the surrounding 
measurements which is shown by the highlighted section of Fig. 4(b). In fact it can be shown 
that reversing the phase of the affected region produces an acceleration field very similar to 
that shown in Fig. 4(a) and would also match results predicted by an analytical waveguide 
model. This mass loading error introduces significant error into the spatial Fourier transform 
used to separate the modal components and causes this transform to detect higher order modes 
that are not actually significantly contributing to the response. The mass loading problem 
could be reduced or eliminated by using lighter accelerometers or alternatively a laser 
vibrometer system [11]. Unfortunately neither of these solutions were readily available for the 
present study.  
 
 

(a) (b)

(a)
(b)

 
 

 
Figure 4.  Acceleration spectrum measured at (x,y)=(700,240). Also shown is the acceleration field 

over the whole plate at (a) 157.25 Hz which is prior to resonance and (b) 158.5 Hz which 
is close to resonance showing the localised effect of mass loading changing the phase of 
the measurement relative to the surrounding points. 
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Even though the results are subject to experimental errors, the wavenumber can still be used 
to estimate the Young’s modulus and damping of the plate. Figure 5(a) presents the Young’s 
modulus calculated from the experimental wavenumber data and shows reasonable agreement 
with the initial estimate. Similarly, the damping shown in Fig. 5(b) is also close to the initial 
estimates. It should be noted that the initial estimates are purely based on typical properties of 
aluminium so deviation of the experimental values from this estimate does not necessarily 
indicate an error. In order to remove the distinct peaks, a 50 Hz moving frequency averaging 
band has been used on the values for the Young’s modulus and damping and the results are 
also shown in Fig. 5. This averaging shows that the extracted values are in very agreement 
with the typical values once the error introduced by the mass loading is removed. 
 
 

(a) 
 

(b) 
 

Figure 5. Comparison of Young’s modulus (a) and damping (b) extracted from the raw data  
(··········), experimental data (———) with a 50 Hz moving frequency averaging band and 
values used in the analytical model (----------). 

 
The wave amplitudes have also been extracted. In order to generate an analytical model that 
more closely represents the experimental model, the moving frequency averaged Young’s 
modulus and damping extracted from experimental results were used in an updated analytical 
model. Figure 6 shows the amplitude A1,1 for the fundamental mode (m=1) for travelling 
waves along the positive x-direction extracted from the experimental data. The wave 
amplitude generated by the waveguide model using the updated material properties is also 
shown. This figure shows a relatively good match between the experimental and analytical 
results considering the errors that have been found associated with the extraction of the 
wavenumbers. The peaks present in the experimental data that are not present in the analytical 
results are thought to be due to the mass loading and thus introduced resonances from higher 
order modes. Above 500 Hz the modelling also appears to breakdown and the reason for this 
requires further investigation. It is suggested that all of the extracted parameters could be 
enhanced using an improved measurement method with either lighter accelerometers or a 
laser vibrometer to minimise the impact of mass loading associated with the instrumentation. 

4. CONCLUSIONS 

The structural wavenumbers, Young’s modulus and damping have successfully been extracted 
using a wave extraction technique for experimental data. It was found that the instrumentation 
altered the natural frequencies associated with some measurement locations, leading to errors 
in the experimental measurements. It is suggested that using lighter accelerometers or a laser 
vibrometer system would reduce the error associated with the added mass of the 
accelerometers. The wave amplitudes were also extracted from the experimental data and 
these compared well with analytical results. Future work using this method includes using the 
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experimentally extracted wave amplitudes to predict the average energy levels and 
transmission coefficients in coupled structures. 

This work was carried out by funding provided by the Australian Research Council 
under an ARC Discovery grant DP0451313. 

 

 
 

 
Figure 6. Wave amplitude A1,1 calculated analytically (———) and extracted from experimental 

measurements (··········). Note that in the analytical waveguide model, the Young’s 
modulus and damping were updated with the frequency averaged wavenumber extracted 
experimentally. 
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