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Abstract 
 
Prediction of vibration transmission in built up structures such as buildings or ship hulls is an 
important consideration in modern engineering design. As the excitation frequencies increase 
and hence the number of modes increase, it is more practical to consider average vibrational 
responses and their distribution over the structure using energy techniques such as Statistical 
Energy Analysis (SEA). The successful use of SEA strongly depends on the accurate 
estimation of the SEA parameters, namely the coupling loss factors (CLFs). This paper 
investigates the dynamic response of coupled plates using an SEA model with CLFs obtained 
from transmission coefficients derived for finite coupled plate structures. Traditionally, the 
CLFs in an SEA model have been obtained from transmission coefficients derived for infinite 
and semi-infinite structures, due to the ease with which they can be derived. Conversely, 
transmission coefficients for finite structures are difficult to obtain due to the reverberant 
field. In this paper, transmission coefficients for finite coupled structures are derived using an 
analytical waveguide method which is used to determine the wave amplitudes on each side of 
a junction. A scattering matrix is then used to separate the reverberant waves leaving the 
junction into reflected and transmitted components. The energy flow due to each of these 
waves is obtained using a wave impedance method, which is subsequently used to determine 
the transmission coefficients. CLFs are obtained from the transmission coefficients for a finite 
L-shaped plate under multiple point force excitation. The SEA subsystem energy levels using 
these CLFs are compared to results obtained from traditional SEA theory as well as frequency 
and spatially averaged energy levels obtained from the analytical waveguide method. Results 
for both the CLFs and SEA energy levels for semi-infinite and finite structures are in very 
good agreement with each other and with the exact average energy levels obtained from the 
analytical model. 

1. INTRODUCTION 

Statistical Energy Analysis (SEA) is an established predictive technique for high frequency 
vibration analysis and is based on the transfer of energy between subsystems [1,2]. SEA relies 
on the accurate determination of a number of parameters including the coupling loss factor 
(CLF), damping loss factor and the input power in order to make a meaningful prediction of 
the vibrational energy of each subsystem. SEA is based on coupling power proportionality 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

2 

which implies that the power transfer between two connected subsystems is proportional to 
the modal energy difference between them [2]; the CLF is essentially the proportionality 
constant for this relationship. Due to the importance of the CLFs as an SEA parameter, it has 
received much research attention. There are several different approaches for deriving CLFs 
but the most common is the wave approach to determine transmission coefficients from which 
the CLFs can be obtained [2-5].  

To determine the transmission coefficient of a junction, it is generally required to 
calculate the energy flow incident on and through the junction and this has been the focus of 
various energy methods. Energy flow in a plate structure using the Poynting vector method 
has been presented by Romano et al. [3] and accounts for energy transmission due to flexural 
and in-plane motion. Transmission coefficients for finite structures have not been widely 
studied due to the general assumption that, at least in the frequency average, the transmission 
coefficients for semi-infinite and finite structures are equivalent [4]. It has been common 
practice to use the transmission coefficient derived for a semi-infinite system as an 
approximation for that of a finite system [2,4-6]. Park et al. [7] examined ‘semi-finite’ 
structures where either the source or receiver plate was finite. They demonstrated that the 
finite boundary conditions significantly altered the transmission coefficients from those 
predicted for the semi-infinite structure, though there were similarities in the transmission 
coefficients predicted for both systems. Another reason for using the transmission coefficient 
derived from a semi-infinite structure as an approximation to that of a finite system is due to 
the difficulty involved in separating the transmitted and reflected wave components from the 
outgoing waves leaving the junction in a reverberant structure. Wester and Mace [8] used a 
scattering matrix derived from a wave approach to determine the outgoing waves produced by 
incoming waves incident on a junction of a coupled plate structure and used a combination of 
these coupled junctions to model an entire plate structure. 

In this paper, CLFs are obtained from transmission coefficients derived for finite 
coupled plates. The scattering matrix method has been employed as a means of separating the 
incoming and outgoing waves at a coupled finite plate junction. A wave impedance method is 
then used to determine the energy due to each wave component, from which the energy flow 
associated with incident, reflected and transmitted waves can be obtained. The transmission 
coefficients derived for finite structures are used to determine the SEA CLFs and are 
compared to similar results obtained using transmission coefficients derived for infinite and 
semi-infinite coupled plates. In addition, SEA energy levels for semi-infinite and finite 
systems are compared with the exact average energy levels obtained from the analytical 
waveguide model. 

2. THEORY 

2.1 Analytical waveguide method 

An L-shaped plate system as shown in Fig. 1 is examined, which is simply supported along 
two parallel edges corresponding to 0=y  and yL  and free at the other two edges 
corresponding to 01 =x  and 22 xLx = . The junction of the two plates corresponds to 11 xLx =  
and 02 =x . The two plates are of the same material and thickness. An external point force 
excitation of amplitude inF  at a location ),( inin yx  is applied to plate 1. The equation of 
motion for the flexural motion of a plate w  is given by [9]:  
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where 224 ∇∇=∇  and 22222 // yx ∂∂+∂∂=∇  is the Laplace operator. D is the plate flexural 
rigidity, ρ  is the density and h  is the plate thickness. Damping has been included using a 
complex Young's modulus, )1(ˆ ηjEE += , where E  is the Young’s modulus and η  is the 
structural loss factor. 

 
 

Figure 1.  L-shaped plate dimensions and coordinate system. 
 
Using the analytical waveguide method, the flexural displacement of the plate with two 
parallel simply supported edges results in a modal solution in the −y direction and a 
travelling wave solution in the −x direction. A general solution for the flexural displacement 
is given by [10]: 
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where qpA ,  are the wave displacement amplitudes, where the subscripts p  and q  refer to the 
plate number and wave index, respectively. The first two waves of amplitude 1,pA  and 2,pA  
represent travelling waves in the positive and negative −x directions respectively. The last 
two waves are evanescent waves in the positive and negative −x directions. yy Lmk /π=  is 

the wavenumber in the −y direction, where m is the mode number. 22
ypx kkk −=  and 

22
ypn kkk +=  are the wavenumbers along the −x direction for the propagating and 

evanescent waves, where 4 2 / Dhk p ρω=  is the plate flexural wavenumber. The wave 
displacement amplitudes in each section of the L-shaped plate are evaluated using the 
boundary conditions at the free edges and continuity equations at the external force location 
and L-junction. The boundary conditions at the free edges corresponding to 01 =x  and 

22 xLx =  result in zero bending moment and net vertical shear force [9]. Due to the external 
force, there are four coupling equations at inxx = , corresponding to continuity of 
displacement and slope and equilibrium of the moments and shear forces [10]. The coupling 
equations at the junction of an L-shaped plate are well established [6,11]. The internal forces 
and moments acting on the plate are given by [9]: 
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where xM  is the bending moment, xQ  is the shear force due to bending, xyM  is the twisting 
moment and υ  is Poisson’s ratio. The unknown wave coefficients can be determined by 
arranging the various equations into a matrix of the form FαA = , where the matrix α  
contains details of the boundary and continuity equations, the vector A contains the unknown 
wave displacement amplitudes, and the vector F contains details of the external force applied 
to plate 1. The wave displacement amplitudes can then be found by FαA 1−= . 

2.2 Transmission Coefficients 

 
 

Figure 2.  Power incident, transmitted and reflected on the junction of (a) semi-infinite and (b) finite 
plates. 

 
The transmission coefficient τ  for a junction is defined as the ratio of transmitted power 

transP  to the incident power incP  and is given by [6]: 
 

 
inc

trans

P
P
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A simplified method of calculating the transmission coefficient for infinite L-shaped beam 
and plate structures was presented by Cremer et al. [6]. An approximation for the 
transmission coefficient for an infinite L-shaped plate with homogeneous properties is given 
by: 
 

 ( )22/52/512
2

−+
=

σσ
τ  (7) 

 
where 21 / hh=σ  is the ratio of the thickness of the two plates. For plates of the same 
thickness ( 1=σ ), the transmission coefficient is 5.012 =τ . To evaluate the transmission 
coefficient for finite structures, it is necessary to separate the energy flow leaving the junction 
into components due to reflection and transmission.  
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Figure 2(a) and 2(b) shows the waves generated by an external force for a semi-infinite and 
finite L-shaped plate, respectively. inP  is the input power due to the external force and refP  is 
the reflected power. With a single excitation, semi-infinite structures only generate one set of 
active incident, transmitted and reflected waves, as shown in Fig. 2(a). In the case of a finite 
structure (Fig. 2(b)), a reverberant field is generated by reflections at the finite plate edges.  

There are a number of ways that energy flow can be evaluated from a waveguide 
solution including the Poynting [3] and wave impedance [8] methods. Using the Poynting 
method, the time averaged net energy flow in the −x direction per unit width of plate is given 
by [3]:  
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where w&  denotes derivative of w  with respect to time. When Eq. (8) is fully expanded, there 
are cross power terms involving interactions between the positive and negative travelling and 
evanescent waves. These cross power terms are commonly neglected in wave impedance 
based methods on the assumption that travelling waves alone are the dominant mode of 
energy transmission [8]. Using this assumption, the energy flow that is associated with a 
particular wave can be determined from Eq. (8) by substituting only the component of the 
displacement associated with that wave. Referring to Eq. (2), the displacement qpw ,  
associated with a travelling wave of amplitude qpA ,  ( 2,1=q ) is given by: 
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Using this approach, the power flow is separated into positive and negative components 
associated with the positive and negative travelling waves. This method can be used to obtain 
the energy flow associated with the incoming and outgoing waves at a junction. The energy 
flow due to reflected and transmitted waves at a junction can now be determined using a 
scattering wave matrix which is described in what follows. 

2.3 Scattering Matrix Method 

The scattering matrix is used to separate the outgoing waves generated at a junction in a 
reverberant system into components due to reflected and transmitted waves. The scattering 
matrix is developed by rearranging the coupling equations for the plate junction such that the 
outgoing wave amplitudes are calculated for a given set of incoming wave amplitudes. Hence, 
the coupling equations can be expressed as inout bAaA = , where { }T

in AAAA 4,22,23,11,1=A  
is a vector containing the amplitudes of waves incoming to the junction from each plate, and 

{ }T
out AAAA 3,21,24,12,1=A  contains the amplitudes of waves produced at and leaving the 

junction. Both a  and b  are matrices simply derived by rearranging the coupling equations in 
the matrix α . The scattering matrix T  is given by baT 1−=  and hence inout TAA = . 

The first step in separating the reflected and transmitted wave components in a finite 
structure is to evaluate the wave displacement amplitudes using the waveguide method. The 
incoming waves (both travelling and evanescent) that are incident on one side of the junction 
are then used as the input to the scattering matrix with the incoming wave from the opposite 
direction being set to zero. The outgoing wave amplitudes are then calculated and these 
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represent the transmitted and reflected waves. The process is repeated for incoming waves on 
the opposite side of the junction. By separating the wave displacement amplitudes, the energy 
flow associated with each wave can be determined using Eqs. (8) and (9). The transmission 
coefficient is then evaluated using Eq. (6). 

2.4 Coupling Loss Factors 

SEA is based on coupling power proportionality, which theorises that the energy flow 
between two sub-systems is proportional to the modal energy difference between the two sub-
systems. This has been proven analytically for two coupled oscillators [12] and generic 
structures such as plates and beams for which CLF expressions have been derived in terms of 
the frequency and space averaged Green functions of the coupled system [13]. The CLFs are 
an important SEA parameter and have a large impact on the accuracy of subsystem energy 
level predictions. There are a number of ways that CLFs can be derived, for example, the 
general expression used to determine the CLF for two plates joined along a line in terms of a 
wave-based transmission coefficient is given by [2]: 
 

 
1
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where L  is the length of the junction, ω  is the centre frequency of the band of interest, 1S  is 
the surface area of the plate 1, pp kc /ω=  is the bending wave velocity of flexural waves in 

the first plate and 12τ  is the diffuse wave transmission coefficient from plates 1 to 2. Using a 
wave-based approach, the transmission coefficient is generally evaluated for semi-infinite 
plates by determining the transmission coefficient with respect to the incident wave angle and 
then taking the diffuse wave transmission coefficient to be that integrated over all incident 
angles [2]. In this paper, the diffuse wave transmission coefficient is evaluated by averaging 
the transmission coefficients over an ensemble of random input force locations [7]. Details of 
SEA equations used to find subsystem energy levels are well established and can be found in 
texts such as Lyon and DeJong [2]. 

3. RESULTS 

Results are presented for an L-shaped plate as shown in Fig. 2 with dimensions of 
mm12001 =xL , mm5002 =xL  and mm450=yL . Both plates have a thickness of mm2=h . 

The plates are of aluminium with a Young’s modulus of E =71 MPa, density ρ =2800 kgm-3, 
Poisson’s ratio υ =0.3 and structural loss factor of η =0.03. A high value of damping was used 
to ensure high modal overlap and a broad frequency range over which the SEA analysis is 
valid. 

Figure 3 presents the frequency averaged (1/3 octave band) CLFs using Eq. (10). In Fig. 
3, CLFs are presented for transmission coefficients which were obtained for infinite, semi-
infinite and finite L-shaped coupled plates. The CLF using the transmission coefficient 12τ  for 
an infinite L-plate using Eq. (7) predicts a much higher CLF than that predicted using 12τ  for 
the semi-infinite and finite plates. As there are waves travelling in both directions in a finite 
plate, the transmission coefficient can be evaluated in both directions and hence there are two 
CLFs for the finite system; 12τ  (plates 1 to 2) and 21τ  (plates 2 to 1). For the semi-infinite 
plate, reciprocity was used to determine the CLF from plates 2 to 1 [2]. The CLFs for energy 
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transmission from plates 1 to 2 are nearly identical for both the finite and semi-infinite plate 
systems. However, for the semi-infinite system, the CLF from plates 2 to 1 is considerably 
higher than that predicted for the finite case. 

 

 
 
 

Figure 3. CLFs predicted using transmission coefficients for infinite plates (1 to 2 – · –), semi-infinite 
plates (1 to 2 – – –, 2 to 1 ···×···) and finite plates (1 to 2 ——, 2 to 1 ···○···). 

 

 
 
 

Figure 4. Average (1/3 octave) normalised energy levels predicted using CLFs for infinite (·······), 
semi-infinite (– – –) and finite (– · –) plates compared with average normalised energy levels predicted 
by an analytical waveguide method (——) for an ensemble of 100 random excitation locations on 
plate 1. Plate 1 is shown as thick lines and plate 2 is shown as thin lines. 

 
Figure 4 shows the frequency averaged plate energy levels normalised with respect to the 
input power predicted by the SEA models for the three different CLF models. These results 
are also compared to the normalised frequency and spatially averaged plate energy levels 
evaluated using the analytical waveguide model of the structure. The plate flexural 
displacement from the analytical waveguide model was found using ‘rain-on-the-roof’ 
excitation at 100 different excitation locations. The total vibrational energy at each frequency 
ω  for each plate was evaluated by [2]:  
 

dAwwhE
A

ppp ∫= *2 ωρ                                                       (11) 

 
where A  is the area of each plate and the superscript *  denotes the complex conjugate. 

plate 2 

plate 1 
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Figure 4 shows that using the transmission coefficient for infinite plates in an SEA model 
over-predicts the mean energy levels. The SEA energy levels predicted using both the finite 
and semi-infinite plates are nearly identical. Results show that an acceptable SEA model can 
be produced using semi-infinite transmission coefficients and that the differences between the 
CLFs observed in Fig. 3 make little difference to the end result in this case. The frequency 
and spatially averaged plate energy levels evaluated from the analytical model also followed a 
similar trend to those obtained from the SEA models. 

4. CONCLUSIONS 

This work presents a method to obtain transmission coefficients for finite coupled structures. 
The transmission coefficients were used to obtain the coupling loss factors in an SEA model. 
The CLFs obtained for the semi-infinite and finite plates were significantly lower than that for 
an infinite structure. It was shown that the transmission coefficients and subsequent CLFs 
derived for the finite and semi-infinite structures resulted in SEA energy levels that were in 
very good agreement with each other. 

This work was carried out by funding provided by the Australian Research Council 
under an ARC Discovery grant DP0451313. 
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