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Abstract 
 

Near-field acoustical holography (NAH) using the boundary element method (BEM) is known 

to be very powerful in the source identification and visualization of many practical 

vibro-acoustic sources having irregular boundaries. In order to get rich information on the 

radiated wave components, both of propagating and evanescent waves, sensors should be 

positioned as close as possible to the source surface in principle. Therefore, it is beneficial to 

utilize a conformal hologram plane to the source surface; however, the usual way to measure 

the field data radiated from an irregular shaped source is to adopt a regular hologram plane in 

many cases for measurement ease. In such circumstances, the distance between sensors and the 

nearest point of the source surface cannot be maintained same for all measurement points in 

general. Consequently, different degree of information on propagating and non-propagating 

wave components will be detected by sensors at different positions. In this work, a preliminary 

theoretical and experimental investigations were conducted on such sensor proximity effect to 

the reconstruction errors in using the BEM–based NAH for interior problem.  

1. INTRODUCTION 

The technique of NAH has been shown to be effective in reconstructing the surface 

vibro-acoustic parameters as a backward problem as well as predicting the acoustic parameters 

of the radiated sound field using the restored source data as a forward problem. The quality of 

such parameter identification and calculation depends on the completeness of information, 

which should be experimentally given on the hologram plane. Accordingly, the selection of 

position and shape of the hologram plane and the arrangement of sensors over the hologram 

plane are very important issues in the implementation of NAH. 

In general, hologram must be recorded sufficiently close to the source surface so that the 

evanescent wave information falls within the dynamic range of the sensor [1]. However, the 

usual BEM–based NAH has a hyper-singularity in the close near-field of the source surface. 

This problem can be alleviated with the use of nonsingular or weakly singular boundary 

integral formulation [2, 3]. Sensor and position mismatch are also very common to happen in 

the measurement process. A study on reconstruction errors as a result of inaccurate 

measurement positioning of sensors in planar acoustic holography was reported [4]. 
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Another potential cause of error, as studied in this paper, is the disparity in information on 

propagating and non-propagating wave components captured by sensor due to the variation of 

the distance between sensor and the nearest point on source surface. The amount of error 

produced by a hologram with unequal distance distribution is larger than the one given by the 

conformal hologram located at average distance. Therefore, it is important to understand the 

nature of such kind of sensor proximity error because the arrangement of the hologram plane to 

be perfectly conformal is not practical for most of actual sources having irregular shapes.  

2. SUMMARY OF THE BASIC THEORY OF BEM–BASED NAH 

2.1 Inverse Formulation  

If the boundary surface can be discretized into a number sufficiently small elements to be 

considered moving together as a unit in the domain of interest having surface S , then the 

Kirchhoff–Helmholtz integral equation can be presented in a discrete from as follows [5]: 

  

SnSSS vMpD }{][}{][ = ,  SnfSff vMpDp }{][}{][}{ += . 

 

Here, SD][ , SM ][  are dipole and monopole matrices on the surface, fD][ , fM ][  are those 

corresponding to field pressures, and fp}{ , Snv }{  denote the field pressure vector and normal 

surface velocity, respectively. By substituting Eq. (1) into (2) and assuming the inverse of SD][  

exists, the surface normal velocities can be obtained as 

 

{ } [ ] { }n S v fv G p
+= , 

 

where +⋅)(  denotes the pseudo–inverse operator and ( )1[ ] [ ] [ ] [ ] [ ]
v f f S S

G M D D M
−= +  is the 

transfer matrix relating normal surface velocity to field pressures. By virtue of singular value 

decomposition (SVD), the normal surface velocity can be estimated as  

 

f

H

vvvSn pUWv }{][][][}ˆ{ 1−Λ= , 

 

where [ Λ ] denotes a diagonal matrix whose diagonal elements are non–zero singular values 

and ][W  and ][U  are orthonormal matrices containing left and right singular vectors, 

respectively.  

2.2 Regularization and Reconstruction Error 

The solution given in Eq. (4) inherits an ill-posed inverse problem due to a small cluster of 

singular values in transfer matrix vG][  that its inverse includes a strong amplification of very 

small signal components at higher frequencies. Consequently, it becomes very sensitive to the 

noise and errors in the measured data. To resolve this problem, regularization techniques have 

been developed to refine the reconstruction image to an acceptable level [for example, 5–8]. In 

this study, the Tikhonov regularization technique was employed, for which the regularization 

parameter α  was determined by the Generalised Cross Validation (GCV) method [9]. 

If the measurement noise }{n  coexists with the true signal and it is assumed as 

uncorrelated Gaussian random type having zero mean and variance ,2σ  the expected squared 

(1,2) 

 

(3) 

 

(4) 
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value of reconstruction error is given by  

 
2 1 2ˆ ˆ[({ } { } ) ({ } { } )] [[ ] [ ] ]H H

n S n S n S n S v v FE v v v v tr G G Sσ σ−− − = ≡ , 

 

where FS  represents singularity factor that indicates the degree of singularity of .][ vG  In other 

words, the reconstruction error is in proportion to the measurement noise variance and 

singularity factor of transfer matrix. 

3. EXPERIMENT 

A parallelepiped box having dimensions of 0.5 m (w) x 0.5 m (h) x 1.5 m (l) was constructed to 

test an interior problem. Figure 1 shows the boundary element model comprised of 726 linear 

triangular elements and 365 nodes having the characteristic length of 0.143 m. Based on the 

6/λ –criterion, the high frequency limit of interest was about 400 Hz. The first three cavity 

resonance frequencies were 114.3 Hz, 228.7 Hz, and 343 Hz.  

All walls except the vibrating plate clamped at one end of the box were assumed rigid. 

The plate was made by 1 mm–thick steel sheet with size of 0.5 m x 0.5 m and was excited by an 

electro-dynamic shaker (B&K4809) at (0, 0.115, 0.105) point. Force transducer (Endevco 

2312) and accelerometers (PCB 353B16) were used to measure the excitation force and the 

normal surface velocities at 49 evenly spaced points located on the vibrating plane, 

respectively.  

Without loss of the nature of the system, a leaning hologram was chosen to simply 

simulate a diversity of source–field distances along the x–direction. Figure 1 illustrates the 

measurement configuration, in which the leaning hologram plane is shown in the upper right 

side. The test was conducted for two cases representing different degree of distance inequality. 

Field pressures were measured at 49 evenly distributed positions using ¼–inch microphones 

(B&K 4935). In the first case (case 1), the maximum distance was 0.09 m, while the second one 

(case 2), 0.18 m. The distance difference in x–direction between the lower and the upper side of 

the leaning hologram were 0.06 m, for case 1, and 0.15 m, for case 2. Thus such arrangement 

defines the average distance for both cases at 0.06 m and 0.105 m, respectively.  

For the comparison purpose, the pressure field over three flat holograms located at 

minimum, average, and maximum distances were also measured in a similar manner. The 

minimum distance was chosen as 0.03 m, which was larger than 20% of the element 

characteristic length, which avoids the singularity problem in the close near-field [2].  

4. ANALYSIS OF RECONSTRUCTED RESULT  

In the BEM–based NAH, transfer matrix 
vG][  depends solely on the geometrical condition of 

the problem. Transfer matrices for leaning and flat holograms were obtained and used for the 

calculation of singularity factor for the BEM models. Figure 2 shows the singularity factor 

calculated from Eq. (5) for cases 1 and 2, which shows typical decreasing trend as the increase 

of frequency. The high frequency excitation yields smaller singularity factor than the low 

frequency due to the fact that the non–radiating higher modes are more strongly excited than the 

low frequency excitation.  

It is obvious to expect a high singularity factor when the distance between sensors and the 

nearest point on the source surface is either too far or not conformal to the source surface. This 

condition can be interpreted numerically as the linearly dependence between columns in the 

transfer function vG][ , or, physically, can be translated as the lack of completeness in the 

(5) 
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information captured by sensors, which is closely related to the acoustical and geometrical 

characteristics of the fields at measurement points.  

In Fig. 2, the singularity factor calculated from the leaning holograms plane is higher than 

that from the flat hologram plane located at an average distance. It indicates that the 

reconstructed surface normal velocity will be affected by the measured field pressure near the 

source points. In the viewpoint of reconstruction error, field points farther than the average 

distance influence the result dominantly, even though the field points which are closer to the 

source than the average distance contain significantly rich information on the source activity. 

Consequently, the reconstruction error using the hologram plane having different distances 

from the source, depending on the source position, would have larger reconstruction error than 

the conformal hologram plane located at an average distance.  

 

 
 

Figure 1. The BEM model of a parallelepiped box and holograms used in the experiment, in which the 

vibrating plate was defined on the left side of the box that has densely populated elements compared to 

the other areas. Both of leaning and flat holograms, has 7 by 7 evenly spaced measurement points.  
 

 
 

Figure 2. Singularity factors at the leaning holograms are typically higher than the one given by the flat 

hologram at average distance that signifies a higher reconstruction error.  

4.1 Measured Hologram Data 

Figures 3 and 4 present the measured field pressures at 97 Hz and 158 Hz on the flat and leaning 

holograms. These frequencies correspond to (2,2) and (2,3) modes of the vibrating plate. One 

can observe that the field pressures measured from the leaning holograms give a somewhat 

degraded information on the plate mode shape compared to the flat one. Also, one can find that 
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the phase image, which is very critical for the reconstruction process, became a blurred one. It is 

noted that the field image became flattened in the upper side of the box, at which the distance 

between sensor and the nearest point on the vibrating surface became large. This is due to the 

fact that the high order evanescent wave vectors were diminished more than the nearest side. 

Because the decay rate of such non propagating components become fast as the frequency 

becomes high, the quality of pressure image at 158 Hz is worse than 97 Hz.  

 

 
Figure 3. Field pressure images at 97 Hz: (a) over the flat hologram plane, (b) over the leaning hologram 

plane of case 1, (c) over the leaning hologram plane of case 2.  

 

 
Figure 4. Field pressure images at 158 Hz: (a) over the flat hologram plane, (b) over the leaning 

hologram plane of case 1, (c) over the leaning hologram plane of case 2. 

 

4.2 Surface Reconstruction 

From the measured field pressure, the plate surface normal velocity was directly reconstructed 

using Eq. (3). Figures 5 and 6 present the measured and the reconstructed surface normal 

velocities given by holograms of case 1 and 2 at 97 Hz and 158 Hz. As we expected, conformal 

flat hologram in the close near field (all points at shortest distance) yielded better results 

compared to the leaning holograms. These figures confirm the reconstructed surface velocities 

were more affected by the measurement result in the hologram area farther than the average 

sensor–source distance, even though the quality of field pressure given by the closer hologram 

area is good. In order to investigate the reconstruction error given by a different degree of 

conformity, we have changed the slope of leaning holograms in the simulation. 
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Figure 5. Normalized surface velocity distribution corresponding to (2,2) vibration mode reconstructed 

without regularization. Reconstructions were made from: (a) flat hologram, (b) leaning hologram plane 

(Case 1), (c) leaning hologram plane (Case 2). Measured normal velocity is shown in (d).  

 

 
Figure 6. Normalized surface velocity distribution corresponding to (2,3) vibration mode reconstructed 

without regularization. Reconstructions were made from: (a) flat hologram, (b) leaning hologram plane 

(Case 1), (c) leaning hologram plane (Case 2). Measured normal velocity is shown in (d). 

 

In the simulation, eight holograms having different slopes between 4.6
o
 to 32.6

o
 were 

tested for 50-400 Hz span. By defining θ as the leaning angle, the singularity factor for 8 

leaning holograms were calculated and plotted in Fig. 7(a) as a function of kθ. One can see that 

the singularity factor is affected by the average sensor-to-source distance. The singularity factor 

was amplified approximately by a factor of 10
4
 by tripling the average sensor-to-source 

distance. Even though the measurement at the nearest positions along x=0.03 lead to a similar 

field pressure information, the corresponding singularity factor increases with kθ, which 

suggests an dependency between distance and leaning angle. 

Figure 7(b) shows the surface reconstruction error before regularization for leaning 

holograms of cases 1 and 2. The error percentage that was used in the figure and table is defined 

by L2 norm as   
 

{ } { } { } (%)100~
22

×−=
SnSnSn vvve  

 

The blue solid curves denote the reconstruction errors calculated from the measurement, while 

the red dashed curves are errors calculated from the simulation. In the experiment, the 

signal-to-noise ratio (SNR) during the measurement was about 30 dB. However, as shown here, 

(6) 
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the reconstruction error for leaning holograms provided by the measurement was comparable to 

the simulation result with a SNR of about 10 dB. This is consistent with the fact that the 

amplitudes of non–propagating waves beyond the very close near field region become small, 

which are comparable magnitude with measurement noise. 

Measured and calculated reconstruction errors have a similar tendency as can be seen in 

Fig. 7(b). At low frequencies and small leaning angles, the simulated reconstruction error is 

relatively higher than the measured one; contrastingly, at high frequencies and large leaning 

angles, the simulated has lower reconstruction error than the measurement result. One 

explanation is that the additive noise given in the simulation is normally distributed for all 

frequency range of interest; however, in the experiment, the measurement noise can takes 

different distribution. Because the phase information at low frequencies is simple and robust to 

noise, the disruption given by noise at high frequencies is likely to contribute to error in major. 

Figure 8 illustrates the effect of noise on the measured field pressures at 97 Hz and 158 Hz. The 

second reason is that the magnitudes of evanescent waves at high frequencies decay rapidly and 

easily falls to a level comparable to the measurement noise.  

As mentioned before, the reconstruction field of the surface velocity is sensitive to the 

measurement noise; the regularization method can be utilized to improve the reconstruction 

result. Table 1 summarizes the calculated error percentage before and after regularization 

employing the Tikhonov regularization technique and GCV parameter finding method.  

 

 
Figure 7. (a) Singularity factors calculated for 8 leaning holograms, (b) a comparison of measured and 

calculated reconstruction error for the selected cases. 

 

 
Figure 8. The field pressures provided by leaning hologram of case 1 at 97 Hz: (a) before and (b) after 

the addition of noise. Similar data for 158 Hz: (c) before and (d) after the addition of noise. The given 

signal-to-noise ratio was 10dB. 
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Table 1. Reconstruction errors of the surface velocity at the vibrating surface. 

 

Reconstruction error (%) 
Test 

case 

Frequency     

(Hz) 
Without 

regularization 

With 

regularization 

Reconstruction from a flat hologram 

plane at 0.03 m with regularization 

097 320 43.6 30.7 
1 

158 470 46.6 40.3 

097 935 51.4 30.7 
2 

158 1200 55.8 40.3 

5. CONCLUSION 

In this paper, a preliminary investigation result was reported on the effect of variation of sensor 

proximity to the source surface in implementing the BEM–based NAH. It was shown that the 

reconstruction error of source velocity is mostly affected by the field pressure at the positions 

located far from the source surface and the quality of reconstructed source image is affected 

largely from the nearest field data. It is thought that a further study should be directed to 

develop a method to compensate the error caused by different distances of sensors from the 

practical source surface. 
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