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Abstract 
 
The finite element analysis of plate vibration has become one of the classical problems that 
received a lot of attention from the researchers through the past few decades. Different models 
were developed including the classical polynomial elements, the hierarchical finite element 
models, and most recently, the spectral finite element models. Developers of different models 
introduced there models and performed many studies to prove that the models were suitable 
and accurate with validations performed against analytical models, when available, and with 
other numerical models. In this study, the first plate spectral finite element model is presented 
with a generalized methodology for the derivation element matrices. Three different finite 
element models will be compared in the study of free vibration characteristics of an isotropic 
plate with different boundary conditions. The aim of the study is to point out the points of 
weakness and strength of each model and to emphasise the ease and interchangeability of the 
models. The models compared are a classical 3rd order/4-node element, a 7th order/ 16 node 
element, and the proposed spectral finite element model.The models were created using a 
symbolic manipulator, Mathematica® 4.1, in order to get the elements' matrices in closed 
form to avoid the errors introduced by the numerical integration that is usually used in 
creating the element matrices. Results are then compared with those obtained using numerical 
integration performed by creating a similar code using MATLAB 6.1. 

1. INTRODUCTION 

The spectral finite element method is a development of the dynamic stiffness matrix 
approach. The dynamic stiffness matrix approach is distinct from conventional finite element 
in that it depends on the exact solution of the differential equations involved with the problem 
 [1]; that solution is used instead of the polynomial trial functions to result in a finite-element-
like model that could capture the exact dynamics of the structure.  

The higher accuracy of the dynamic stiffness matrix method arises from the fact that the 
higher the frequency of vibration, the shorter the wave length of the propagating wave; thus, 
to accurately capture the dynamics of the structure, finer mesh is required for conventional 
finite element models, which in turn means larger model and more computational effort. On 
the other hand, the nature of the dynamic stiffness matrix is that the dynamic solution is 
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embedded in the matrix model of the element  [2], thus, less elements are required to present 
the structure with the same or higher accuracy compared to conventional finite element 
method. 

Langley  [3] suggested the application of dynamic stiffness matrix method for the study 
of free and forced vibration of aircraft panels, and later  [4], he coupled it with boundary 
element method to study the acoustic radiations inside an aircraft fuselage. In both studies, the 
accuracy of the model was illustrated. 

The spectral analysis has been a method used for the approximate solution of different 
types of structural vibrations problems  [5]- [11]. Tawfik and Baz  [12] resented, for the first 
time, a spectral finite element model for a general plate. The model used numerical 
integration for the evaluation of element matrices. They validated their results using classical 
solutions as well as experimental results for a plate with bonded piezoelectric patches and 
shunt electric circuits. 

The previous survey showed that the spectral finite element model have proven higher 
accuracy and efficiency in the modelling of the one-dimensional structures. It has also, proven 
effective in the reduction of the finite element model for structures with viscoeleastic 
components. On the other hand, the spectral finite element models for plates were only 
developed for the Levy-type plates or the system matrices had to be evaluated using 
numerical integration.  

In this study, a spectral finite element model is going to be presented together with a 3rd 
order/4-node and 7th order/16-node models for the analysis of the free vibration characteristics 
of a plate with different boundary conditions. The main aim of this study is to emphasise the 
simplicity of developing a generalized finite element model for different structure vibration 
problems as well as presenting a solid base comparison of the different models. 

2. PLATE FINITE ELEMENT MODEL 

 
In this section, the different trial functions 
used to model the plate are going to be 
presented, then, the generalized finite element 
model of a thin plate element, using the 
classical plate theory, will be presented 
independent of the trial functions. All the 
elements presented are assumed rectangular 
elements that are aligned with the global 
coordinates.  

2.1 Trial Functions 

2.1.1 Conventional 3rd order, 16-DOF, 
element 

 

Figure 1. Node numbering scheme for the 3rd 
order and spectral finite element models. 

The 4-node element could be presented by the sketch in Figure 1. The transverse 
displacement w(x,y) at any location x and y inside the plate element is expressed by 
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where coefficients a1 through a16 are to be determined in terms of the nodal displacements 

2.1.2 7th order, 64-DOF, element 

To present the displacement distribution 
in the 16-node element presented in Figure 2, 
a 64-term polynomial may be used that 
contains all the x and y-powers up to the 7th 
order. The unknown coefficients of the 
polynomial will extend from a1 through a64. 

2.1.3 Spectral Element Trial Function 

The proposed spectral finite element model is 
based on the use of exponential functions as 
trial functions instead of the usual 
polynomials that are used with conventional 
finite element models. The transverse 
displacement w(x,y) at any location x and y 
inside the plate element may be expressed by 

 
Figure 2. Node numbering scheme for the 7th 

order 16-node element. 
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where kx is the wave number in the x-direction and ky is the wave number in the y-direction; 
and: 
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where k is the wave number of a planar wave 
propagating at an angle θ measured 
anticlockwise from the positive x-axis 
(Figure 3), ρ is the mass density, h plate 
thickness, and D is the plate flexural rigidity 
given by 

( )2

3

112 ν−
=

EhD  

Also, the coefficients a1 through a16 are to be 
determined in terms of the nodal 
displacements. The above proposed trial 
function is a generalization of the beam trial 
function proposed by Doyle  [5].  

Figure 3. Planar wave propagating in a plate. 
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2.1.4 Unknown Coefficients in Terms of Nodal Displacement 

In general, the displacement trial function could be written as, 
 

  { }aHyxw w=),(  (3) 
 
where{ }  161 aaa L=  for 3rd order and spectral element and { }  641 aaa L=  for the 
7th order element. 

For the elements under consideration, 4 degrees of freedom are associated with each 
node; namely, w for the displacement, wx & wy for the slope in the x and y-directions 
respectively, and wxy for the cross derivative of displacement. Thus, we may write, 
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Where the subscript (,x & ,y) indicate the derivatives in the x and y-directions respectively. 
Substituting the nodal coordinates into equation (4), we obtain the nodal bending 
displacement vector {wb} in terms of {a} as follows, 
 

 { } [ ]{ }aTw bb =  (5) 
 
where {wb} and [Tb] are the element degrees of freedom and the transformation matrix 
respectively. 
 
From equation (5), we obtain 
 

 { } [ ] { }bb wTa 1−=  (6) 
 
Substituting equation (6) into equation (5) gives 
 

 [ ][ ] { } [ ]{ }bwbbw wNwTHyxw == −1),(  (7) 
 
where [Nw] is the shape function for bending given by 
 

 [ ] [ ][ ] 1−= bww THN  (8) 
 

2.2 Strain Displacement Relations 

Consider the lateral deflection; the classical plate strain-displacement relation for the lateral 
deflections of thin plates can be written as follows 
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Where { }ε  is the strain vector, z is the vertical distance measure from the plate mid plane, and 
the curvature vector {κ}, and 
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Thus, the strain-nodal displacement relation can be written as 
 

 { } [ ]{ }bb wBzz == }{κε  (11) 

2.3 Element Matrices 

Principal of virtual work states that 
 
 ( ) 0=−=Π TUδδ  (12) 
where Π is the total energy of the system, U is the strain energy,  T is the kinetic energy, and 
δ(.) denotes the first variation. 

2.3.1 The Potential Energy 

The variation of the potential energy for a thin plate is given by 
 
 { } { }∫=

V

T dVU σδεδ  (13) 

 
where {σ} is the stress vector and V is the volume of the structure. Substituting from 
equations (15) we get, 
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where z is the vertical distance measured from the plate mid-plane, [ ] T−.  is the transpose of the 
inverse, [kb] is the element bending stiffness matrix, and [Q] is the stress strain constitutive 
elation. In this study, only isotropic plates are going to be used to illustrate the procedure and 
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the elements' differences, however, the same procedure is applicable to general orthographic 
plates as well as composite plates. 

2.3.2 The Kinetic Energy 

The variation of the kinetic energy T of the plate element, ignoring the rotary inertia, is given 
by, 
 

 ∫ ∂
∂

=
V

dV
t
wwT 2

2

ρδδ  (15) 

 
where ρ is the density. The above equation can be rewritten in terms of nodal displacements 
as follows 
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where [mb] is the element bending mass matrix. Finally, the element equation of free vibration 
can be written as 
 
 [ ]{ } [ ]{ } { }0=+ bbbb wkwm &&  (17) 
 

Note that the matrices constituting the above equation are all dependent on the driving 
frequency for the case of the spectral finite element model. Thus, the eigenvalue problem can 
not be solved directly for the system natural frequencies; rather, an iterative method should be 
used to obtain the eigenvalues. 

2.4 Steps for Evaluating the Spectral Element Matrices 

1. Determine the frequency at which the system is vibrating. 
2. Evaluate the interpolation function, Hw, and its derivatives, 

xwH
,

,
ywH

,
, and 

xywH
,

,at all 
the element nodes 

3. Evaluate the matrix Tb then invert it 
4. Evaluate the integrals of the system matrices. Note that the matrix Tb is constant with 

respect to the integrals which enable the simplification of the integral by delaying the 
multiplication of the matrix until the end of the integral evaluation. 

Note that the above steps are generic for any finite element model for the modelling or 
rectangular plates except for that the frequency loop is must included for the spectral model. 
Nevertheless, the integral mentioned in the fourth step could be evaluated using analytical or 
numerical methods. 

To get the system Eigenvalues for the proposed spectral finite element model, the problem 
is solved using any, reasonable, initial frequency; then, the resulting eigenvalue should be 
used in a second iteration. The model usually converges in less than 5 iterations except for 
very low frequencies (less than 10Hz). 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

3. NUMERICAL RESULTS 

A symbolic manipulator, Mathematics® 4.1, was utilized for writing the finite element 
procedure. The integrals needed for the element matrices where, thus, evaluated analytically 
for the square plate elements used. Note that, each 7th order element introduces the same 
number of nodes / DOF's that is introduced by the 3rd order and the spectral element; thus, in 
all the results presented, the number of elements used for both models is devisable by 9. 
 

3.1 Convergence 

The convergence of the different models was tested against analytical results for a simply 
supported plate as well as classical solutions presented for plates with clamped and free 
boundary conditions. Table 1 through Table 3 presents the normalized frequency parameter 
for a simply supported (SSSS) square plate; where the normalized frequency parameter is 
given by the closed form solution given by 
 

 22
2

2

mn
D
ha

+==
ρ

π
ωω  (18) 

 
where ω  is the normalized frequency parameter, ω  is the natural frequency of the plate,  a  is 
the plate length, h is the plate thickness, and n and m are the mode number in the x and y 
directions respectively. 

The results presented in Table 1 through Table 3 show that all the proposed finite 
element models are capable of converging fast for higher modes of vibration. It is also 
noticeable that the error of the 3rd order and spectral models are similar for different modes 
and different mesh sizes. Meanwhile, for the 7th order model, the error is higher in finer mesh 
sizes! 

Table 1 Normalized frequency parameter convergence for an SSSS plate compared to exact results for 
spectral finite element model 

Exact 
3x3 

Elements 
6x6  

Elements 
9x9 

Elements 
12x12 

Elements 
15x15 

Elements 

 # n M ω  ω  Error ω  Error ω  Error ω  Error ω  Error
1 1 1 2 2.07 3.7% 2.04 2.0% 2.03 1.4% 2.02 1.1% 2.02 0.9%
2 1 2 5 5.18 3.7% 5.07 1.4% 5.05 0.9% 5.04 0.7% 5.03 0.6%
3 2 1 5 5.18 3.7% 5.07 1.4% 5.05 0.9% 5.04 0.7% 5.03 0.6%
4 2 2 8 8.43 5.4% 8.19 2.4% 8.12 1.5% 8.09 1.2% 8.07 0.9%
5 1 3 10 10.73 7.3% 10.09 0.9% 10.05 0.5% 10.04 0.4% 10.03 0.3%
6 3 1 10 11.03 10.3% 10.14 1.4% 10.07 0.7% 10.05 0.5% 10.04 0.4%
7 2 3 13 14.44 11.1% 13.31 2.4% 13.18 1.4% 13.13 1.0% 13.11 0.8%
8 3 2 13 14.44 11.1% 13.31 2.4% 13.18 1.4% 13.13 1.0% 13.11 0.8%
9 1 4 17 18.92 11.3% 17.22 1.3% 17.09 0.5% 17.05 0.3% 17.04 0.2%

10 4 1 17 18.92 11.3% 17.22 1.3% 17.09 0.5% 17.05 0.3% 17.04 0.2%

Table 2 Normalized frequency parameter convergence for an SSSS plate compared to exact results for 
the 3rd order element. 

 # n m Exact 
3x3 

Elements 
6x6  

Elements 
9x9 

Elements 
12x12 

Elements 
15x15 

Elements 
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   ω  ω  Error ω  Error ω  Error ω  Error ω  Error
1 1 1 2 2.07 3.7% 2.04 2.0% 2.03 1.4% 2.02 1.1% 2.02 0.9%
2 1 2 5 5.21 4.2% 5.07 1.5% 5.05 1.0% 5.04 0.7% 5.03 0.6%
3 2 1 5 5.21 4.2% 5.07 1.5% 5.05 1.0% 5.04 0.7% 5.03 0.6%
4 2 2 8 8.50 6.3% 8.20 2.5% 8.12 1.5% 8.09 1.2% 8.07 0.9%
5 1 3 10 11.20 12.0% 10.10 1.0% 10.05 0.5% 10.04 0.4% 10.03 0.3%
6 3 1 10 11.58 15.8% 10.15 1.5% 10.07 0.7% 10.05 0.5% 10.04 0.4%
7 2 3 13 15.26 17.4% 13.33 2.5% 13.19 1.4% 13.13 1.0% 13.11 0.8%
8 3 2 13 15.26 17.4% 13.33 2.5% 13.19 1.4% 13.13 1.0% 13.11 0.8%
9 1 4 17 19.82 16.6% 17.29 1.7% 17.10 0.6% 17.06 0.3% 17.04 0.2%

10 4 1 17 19.82 16.6% 17.29 1.7% 17.10 0.6% 17.06 0.3% 17.04 0.2%

Table 3 Normalized frequency parameter convergence for an SSSS plate compared to exact results for 
the 7th order element. 

Exact 
1x1 

Elements 
2x2  

Elements 
3x3 

Elements 
4x4 

Elements 
5x5 

Elements 

 # n m ω  ω  Error ω  Error ω  Error ω  Error ω  Error
1 1 1 2 2.08 4.0% 2.16 8.0% 2.11 5.5% 2.09 4.3% 2.07 3.6%
2 1 2 5 5.38 7.6% 5.19 3.8% 5.18 3.7% 5.14 2.8% 5.11 2.3%
3 2 1 5 5.38 7.6% 5.19 3.8% 5.18 3.7% 5.14 2.8% 5.11 2.3%
4 2 2 8 8.99 12.3% 8.18 2.2% 8.46 5.8% 8.35 4.3% 8.28 3.5%
5 1 3 10 10.29 2.9% 10.07 0.7% 10.12 1.2% 10.14 1.4% 10.12 1.2%
6 3 1 10 11.02 10.2% 10.68 6.8% 10.17 1.7% 10.18 1.8% 10.14 1.4%
7 2 3 13 14.95 15.0% 13.58 4.5% 13.42 3.2% 13.48 3.7% 13.39 3.0%
8 3 2 13 14.95 15.0% 13.58 4.5% 13.42 3.2% 13.48 3.7% 13.39 3.0%
9 1 4 17 17.96 5.6% 17.44 2.6% 17.24 1.4% 17.12 0.7% 17.14 0.8%

10 4 1 17 17.96 5.6% 17.44 2.6% 17.24 1.4% 17.12 0.7% 17.14 0.8%
 

Table 4 through Table 6 present the frequency parameter results obtained for a clamped 
square plate (CCCC) with Poisson’s ratio of 0.3 compared to classical results presented in the 
book by Leissa  [13]. The frequency parameter 

*
ω  is given by the equation 

 
 ωπω 2*

=  (19) 
 

It can be easily noticed from the results presented that very reasonable results were 
obtained for this case with only 36 elements in the cases of 3rd order and spectral elements and 
only 4 elements for the case of 7th order element. 
 

Table 4 Frequency parameter convergence for CCCC plate compared to classical results  [13] for the 
spectral element 

3x3 
Elements 

6x6 
Elements 

9x9 
Elements 

12x12 
Elements 

15x15 
Elements 

# Classical 
*

ω  Error 
*

ω  Error
*

ω  Error
*

ω  Error 
*

ω  Error
1 35.11 36.14 2.9% 36.00 2.5% 35.99 2.5% 35.99 2.5% 35.99 2.5%
2 72.93 74.92 2.7% 73.52 0.8% 73.42 0.7% 73.40 0.6% 73.40 0.6%
3 72.93 74.92 2.7% 73.52 0.8% 73.42 0.7% 73.40 0.6% 73.40 0.6%
4 107.5 111.69 3.9% 108.48 0.9% 108.27 0.7% 108.24 0.7% 108.22 0.7%
5 131.7 156.19 18.6% 132.46 0.6% 131.76 0.1% 131.64 0.0% 131.60 0.0%
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6 131.7 156.59 18.9% 133.06 1.1% 132.38 0.6% 132.26 0.5% 132.22 0.4%
7 164.4 189.27 15.2% 166.00 1.0% 165.21 0.5% 165.07 0.4% 165.02 0.4%
8 164.4 189.27 15.2% 166.00 1.0% 165.21 0.5% 165.07 0.4% 165.02 0.4%
9 210.3 300.24 42.7% 214.01 1.7% 211.31 0.5% 210.78 0.2% 210.59 0.1%

10 210.3 300.24 42.7% 214.01 1.7% 211.31 0.5% 210.78 0.2% 210.59 0.1%

Table 5 Frequency parameter convergence for CCCC plate compared to classical results  [13] for the 
3rd order element 

3x3 
Elements 

6x6 
Elements 

9x9 
Elements 

12x12 
Elements 

15x15 
Elements 

# Classical 
*

ω  Error 
*

ω  Error
*

ω  Error
*

ω  Error 
*

ω  Error
1 35.11 36.20 3.1% 36.00 2.5% 35.99 2.5% 35.99 2.5% 35.99 2.5%
2 72.93 75.01 2.9% 73.53 0.8% 73.42 0.7% 73.40 0.6% 73.40 0.6%
3 72.93 75.01 2.9% 73.53 0.8% 73.42 0.7% 73.40 0.6% 73.40 0.6%
4 107.5 111.82 4.0% 108.49 0.9% 108.28 0.7% 108.24 0.7% 108.23 0.7%
5 131.7 156.53 18.9% 132.47 0.6% 131.77 0.1% 131.64 0.0% 131.61 0.0%
6 131.7 156.93 19.2% 133.07 1.1% 132.39 0.6% 132.26 0.5% 132.23 0.4%
7 164.4 189.61 15.4% 166.02 1.0% 165.22 0.5% 165.07 0.4% 165.03 0.4%
8 164.4 189.61 15.4% 166.02 1.0% 165.22 0.5% 165.07 0.4% 165.03 0.4%
9 210.3 300.61 42.9% 214.03 1.8% 211.31 0.5% 210.78 0.2% 210.63 0.1%

10 210.3 300.61 42.9% 214.03 1.8% 211.31 0.5% 210.78 0.2% 210.63 0.1%
 

Table 6 Frequency parameter convergence for CCCC plate compared to classical results  [13] for the 
7th order element 

3x3 
Elements 

6x6 
Elements 

9x9 
Elements 

12x12 
Elements 

15x15 
Elements 

# Classical 
*

ω  Error 
*

ω  Error
*

ω  Error 
*

ω  Error 
*

ω  Error 
1 35.11 35.99 2.5% 35.99 2.5% 35.99 2.5% 35.99 2.5% 35.99 2.5% 
2 72.93 73.42 0.7% 73.39 0.6% 73.39 0.6% 73.39 0.6% 73.39 0.6% 
3 72.93 73.42 0.7% 73.39 0.6% 73.39 0.6% 73.39 0.6% 73.39 0.6% 
4 107.5 108.26 0.7% 108.22 0.6% 108.22 0.6% 108.22 0.6% 108.22 0.6% 
5 131.7 137.29 4.3% 131.59 0.0% 131.58 -0.1% 131.58 -0.1% 131.58 -0.1% 
6 131.7 138.07 4.9% 132.22 0.4% 132.21 0.4% 132.21 0.4% 132.21 0.4% 
7 164.4 168.81 2.7% 165.01 0.4% 165.00 0.4% 165.00 0.4% 165.00 0.4% 
8 164.4 168.82 2.7% 165.01 0.4% 165.00 0.4% 165.00 0.4% 165.00 0.4% 
9 210.3 230.45 9.6% 210.58 0.1% 210.52 0.1% 210.52 0.1% 210.52 0.1% 
10 210.3 231.15 9.9% 210.58 0.1% 210.52 0.1% 210.52 0.1% 210.52 0.1% 

 
Table 7 through Table 9 present the frequency parameter results for a free square plate. It 
should be noticed that 0% relative error was obtained for the case of 144 spectral elements for 
almost all the modes. It should also be noticed that the 9th and 10th modes had negative 
relative error which is not seen as a mistake in the finite element model since the results are 
already compared to classical approximate solution of the problem. Similar results were 
obtained for the case of the 3rd order element model while only 4 elements were sufficient for 
the 7th order model. 

Table 7 Frequency parameter convergence for FFFF plate compared to classical results  [13] for the 
spectral element. 

# Classical 
3x3 6x6 9x9 12x12 15x15 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

Elements Elements Elements Elements Elements 
*

ω  Error 
*

ω  Error 
*

ω  Error 
*

ω  Error 
*

ω  Error 
1 13.47 28.37 110.6% 14.81 10.0% 13.75 2.0% 13.47 0.0%     
2 19.6 31.13 58.9% 20.51 4.7% 19.78 0.9% 19.60 0.0% 19.60 0.0%
3 24.27 34.09 40.5% 24.98 2.9% 24.41 0.6% 24.27 0.0% 24.27 0.0%
4 34.8 40.91 17.5% 35.21 1.2% 34.88 0.2% 34.80 0.0% 34.80 0.0%
5 34.8 40.91 17.5% 35.21 1.2% 34.88 0.2% 34.80 0.0% 34.80 0.0%
6 61.09 64.47 5.5% 61.26 0.3% 61.12 0.0% 61.10 0.0% 61.10 0.0%
7 61.09 64.47 5.5% 61.26 0.3% 61.12 0.0% 61.10 0.0% 61.10 0.0%
8 63.69 65.72 3.2% 63.80 0.2% 63.71 0.0% 63.69 0.0% 63.69 0.0%
9 69.5 71.29 2.6% 69.37 -0.2% 69.28 -0.3% 69.27 -0.3% 69.27 -0.3%

10 77.59 78.88 1.7% 77.25 -0.4% 77.19 -0.5% 77.18 -0.5% 77.17 -0.5%

Table 8 Frequency parameter convergence for FFFF plate compared to classical results [13] for the 3rd 
order element. 

3x3 
Elements 

6x6 
Elements 

9x9 
Elements 

12x12 
Elements 

15x15 
Elements 

# Classical 
*

ω  Error 
*

ω  Error 
*

ω  Error 
*

ω  Error 
*

ω  Error 
1 13.47 13.49 0.2% 13.47 0.0% 13.47 0.0% 13.47 0.0% 13.47 0.0%
2 19.6 19.64 0.2% 19.60 0.0% 19.60 0.0% 19.60 0.0% 19.60 0.0%
3 24.27 24.36 0.4% 24.28 0.0% 24.27 0.0% 24.27 0.0% 24.27 0.0%
4 34.8 35.01 0.6% 34.82 0.1% 34.81 0.0% 34.80 0.0% 34.80 0.0%
5 34.8 35.01 0.6% 34.82 0.1% 34.81 0.0% 34.80 0.0% 34.80 0.0%
6 61.09 61.45 0.6% 61.20 0.2% 61.12 0.0% 61.10 0.0% 61.10 0.0%
7 61.09 61.45 0.6% 61.20 0.2% 61.12 0.0% 61.10 0.0% 61.10 0.0%
8 63.69 64.55 1.3% 63.77 0.1% 63.71 0.0% 63.69 0.0% 63.69 0.0%
9 69.5 69.58 0.1% 69.39 -0.2% 69.29 -0.3% 69.27 -0.3% 69.27 -0.3%

10 77.59 77.63 0.1% 77.35 -0.3% 77.21 -0.5% 77.19 -0.5% 77.18 -0.5%

Table 9 Frequency parameter convergence for FFFF plate compared to classical results  [13] for the 7th 
order element 

1x1 
Elements 

2x2 
Elements 

3x3 
Elements 

4x4 
Elements 

5x5 
Elements 

# Classical 
*

ω  Error 
*

ω  Error 
*

ω  Error 
*

ω  Error 
*

ω  Error 
1 13.47 13.47 0.0% 13.47 0.0% 13.47 0.0% 13.47 0.0% 13.47 0.0%
2 19.6 19.60 0.0% 19.60 0.0% 19.60 0.0% 19.60 0.0% 19.60 0.0%
3 24.27 24.27 0.0% 24.27 0.0% 24.27 0.0% 24.27 0.0% 24.27 0.0%
4 34.8 34.80 0.0% 34.80 0.0% 34.80 0.0% 34.80 0.0% 34.80 0.0%
5 34.8 34.80 0.0% 34.80 0.0% 34.80 0.0% 34.80 0.0% 34.80 0.0%
6 61.09 61.11 0.0% 61.09 0.0% 61.09 0.0% 61.09 0.0% 61.09 0.0%
7 61.09 61.11 0.0% 61.09 0.0% 61.09 0.0% 61.09 0.0% 61.09 0.0%
8 63.69 63.69 0.0% 63.69 0.0% 63.69 0.0% 63.69 0.0% 63.69 0.0%
9 69.5 69.28 -0.3% 69.27 -0.3% 69.27 -0.3% 69.27 -0.3% 69.27 -0.3%

10 77.59 77.20 -0.5% 77.17 -0.5% 77.17 -0.5% 77.17 -0.5% 77.17 -0.5%

3.2 Wave Direction 

An important parameter of the spectral finite element model derived in section 2 is the wave 
direction angle θ. That parameter seems to affect all the equations derived for the spectral 
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finite element model. In all the previous results, θ was taken as 45o. It seemed natural that the 
effect of this parameter should be tested. 

At this point, it should be noticed that all the simply supported symmetric-
antisymmetric modes (e.g. mode (1,4) and (4,1)) are the ones that give exactly the same 
values for the normalized frequency parameters (see Table 1); in contrast with all other 
symmetric-symmetric and anisymmetric-antisymmetric modes (e.g. mode (1,3), (3,1) and 
(2,4), (4,2)). 

Table 10 presents the values obtained for the normalized frequency parameter for a 
square simply supported plate with different values of the direction angle θ. The number of 
elements was taken to be 81 elements. It can be noticed that as the angle is deviated from the 
symmetric 45o, the previous observation does not hold true anymore which can be understood 
easily to be a result of the broken symmetry. Nevertheless, the normalized frequency 
parameter results deviate slightly as the angle is changed from 5o to 85o. It should also be 
noticed that the spectral finite element model proposed here fails as the angle becomes 0o or 
90o. 

Figure 4 presents the variation of the 
normalized frequency parameter of modes 
(1,3) and (3,1) for the plate with the change 
in the wave angle from 5o to 85o. A 
distinction can not be made between both 
curves since, for a square plate, both should 
be equal theoretically. On the other hand, it 
is noticeable that the difference between 
both corves is less than 0.3%. Figure 5 
presents contour shading for the mode shape 
of the plate for both modes when the wave 
propagation angle is 5o (note that 5o and 85o 
are similar cases). Note that there is no 
significant difference between Figure 5 and  
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Figure 4. Variation of the normalized frequency 
parameter with the wave direction angle for modes 
(1,3) and (3,1) of a simply supported square plate. 

the plot in Figure 6 which presents the plots for the modes shapes at wave propagation angle 
of 45o. Nevertheless, the mode shapes shown match the theoretical expectations. 

 

Table 10 Change of the resulting normalized frequency parameter with the wave direction angle θ 

# N m Exact θ=5o θ=15o θ=25o θ=35o θ=45o θ=55o θ=65o θ=75o θ=85o

1 1 1 2 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 
2 1 2 5 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 
3 2 1 5 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 
4 2 2 8 8.13 8.13 8.12 8.12 8.12 8.12 8.12 8.13 8.13 
5 1 3 10 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 
6 3 1 10 10.08 10.08 10.07 10.07 10.07 10.07 10.07 10.08 10.08 
7 2 3 13 13.19 13.19 13.18 13.18 13.18 13.18 13.18 13.19 13.19 
8 3 2 13 13.21 13.20 13.19 13.19 13.18 13.19 13.19 13.20 13.21 
9 1 4 17 17.07 17.06 17.07 17.07 17.09 17.07 17.07 17.06 17.07 
10 4 1 17 17.16 17.14 17.12 17.10 17.09 17.10 17.12 17.14 17.16 
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(a) 

 

(b) 

Figure 5. Mode shapes of modes (a) (3,1) and (b) (1,3) for a simply supported square plate. 
Wave propagation angle 5o. 

 

 

(a) 

 

(b) 

Figure 6. Mode shapes of modes (a) (3,1) and (b) (1,3) for a simply supported square plate. 
Wave propagation angle 45o. 

 
Figure 7 presents the variation of the 

normalized frequency parameter of modes 
(1,4) and (4,1) as obtained by the spectral 
finite element model. Note the intersection of 
both curves at propagation angle of 45o. 
Figure 8 presents the contour shading plots of 
the mode shape at wave propagation angle of 
5o. Note the distinct shape of the modes (1,4) 
and (4,1) that appear in those plots. On the 
other hand, Figure 9 presents the plots for the 
modes (1,4) and (4,1) with propagation angle 
of 45o, those plots match the results 
mentioned by Leissa  [13]. 
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Figure 7. Variation of the normalized frequency 

parameter with the wave direction angle for 
modes (1,4) and (4,1) of a simply supported 

square plate. 
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(a) 

 

(b) 

Figure 8. Mode shapes of modes (a) (1,4) and (b) (4,1) for a simply supported square plate. 
Wave propagation angle 5o. 

 

 

(a) 

 

(b) 

Figure 9. Mode shapes of modes (a) (4,1) and (b) (1,4) for a simply supported square plate. 
Wave propagation angle 45o. 

3.3 Analytical vs. Numerical Integration 

A similar code was written using MATLAB® 6.1 script. Numerical integration was used for 
the evaluation of the element matrices. The numerical integration used Gauss-Legendre 
quadrature method for numerical integration  [14]. Different number of quadrature points were 
used. In all the above mentioned models, the results obtained using numerical integration was 
not of significant difference that those obtained by analytical integration from as little as 5 
integration points in each direction. 

4. CONCLUDING REMARKS 

The main objective of this study was to show the possibility of preparing a generic finite 
element model for the solution of the plate vibration problem. The study used three different 
models to emphasize the possibility of the generalization 
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In this study, a new spectral finite element model is proposed, namely, using 
exponential functions as trial functions instead of the conventional polynomial trial functions 
which have proven superior in the one-dimensional structures. The model integrals and 
routines for the calculations of the normalized frequency parameter were performed 
symbolically using Mathematics® version 4.1. 

The effect of the estimated wave direction has shown to be of minor effect on the 
resulting frequency parameter. Thus, the use of 45o angle is a reasonable choice for most 
problems except for those with indicated excitation direction. Also, the effect of the direction 
on mode shape has shown to be of minor. 

The results obtained from the different models emphasised that the use of sophisticated 
models is not of great significance on the results obtained for square plate vibration problem. 
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