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Abstract 
 
In this paper, vibration analysis of a sandwich plate modeled within the First Order Shear 
Deformable Theory (FSDT) under random excitation is presented. It was considered that the 
sandwich plate is thick, and the CPT (Classic Plate Theory) is no longer applicable, therefore, 
one of the shear deformable plate theories, the FSDT, is adapted for the structural 
formulations. The sandwich plate is assumed to be simply supported with movable edges. One 
of the faces of the sandwich plate is exposed to Gaussian stationary random loads with zero 
mean. Both uniformly distributed and point random loads are considered. Thermal effect is 
also taken into account. Root Mean Squares (RMS) of deflection responses are computed and 
compared by using both the CPT and the FSDT. Spectral density of the responses is also 
presented. A parametric study is conducted to show the effects of scattering in the geometry 
of the sandwich plate (both face and core), characteristics of loading and temperature change 
on the sandwich deflection response.         

1. INTRODUCTION 
The use of sandwich type structures continues to grow around the world. Due to their high 
strength and, the need for low weight structures, laminated composite plates and sandwich 
panels are being increasingly used in high –performance systems such as aeronautical and 
aerospace constructions [1]. In sandwich structures, there are bottom and top face sheets, 
which primarily resist bending loads. Transverse normal and shear stresses are transmitted 
through the core. Transverse shear deformations can be important especially when the core is 
thick and has relatively low stiffness [2]. There exist several theories/studies on the free and 
forced vibrations of laminated plates and sandwich panels. They are basically the Classical 
Plate Theory (CPT), which neglects the effect of transverse shear strain; and the shear 
deformable theories (such as the First-order Shear Deformation Theory (FSDT, Mindlin), and 
second and higher order theories e.g. the Third Order Shear Deformation Theory(TSDT)), 
which include the effect of transverse shear strain[3-6].  The free and forced vibration of 
sandwich panels is investigated by using the CPT, FSDT and/or higher-order theories in [7-
12]. Random vibrations of composite structures by using different plate theories are given in 
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[13]. In this study, vibration analysis of a sandwich plate modeled within the First Order 
Shear Deformable Theory (FSDT) under random excitation is presented.       
 

2. STRUCTURAL FORMULATION 
 For the sandwich panel, it is assumed that deformation through thickness is continuous. 

),,( tyxw  is the normal deflection of mid-plane, ),,( tyxxψ   is the rotation about x 
axis, ),,( tyxyψ  is the rotation about y axis. The equations of motion for Mindlin’s Sandwich 
Plate [3] by added thermal and damping terms [2,12,13] can be written as 
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where subscripts/superscripts c and f stand for the core and face, respectively. E  is the 
modulus of elasticity, ν  is the Poisson’s Ratio, G  is the shear modulus, ρ  is the material 
density, h is the thickness, λ  is the damping coefficient, sK  is the shear correction factor, 

( )tyxp r ,,  is the random pressure acting on the top surface of the sandwich plate.  
Thermal moment is 
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where α  is the coefficient of thermal expansion, ( )zyxT ,,  is the temperature changes from a 
stress free reference temperature. The proper material constants for the integrand are used 
within the integral limits. Boundary Conditions of a Mindlin’s Plate for a simply supported 
with in-plane “movable ends” as follows: 
( ) ( ) ( ) ( ) 0,,,0,,,,,0 ==== tbxwtxwtyawtyw  (7)  
( ) ( ) ( ) ( ) 0,,,0,,,,, ==== tbxMtxMtyaMtyoM yyyyxxxx  (8)  
( ) ( ) ( ) ( ) 0,,,0,,,,,0 ==== tbxtxtyaty xxyy ψψψψ  (9) 

where the bending moments are [3,12] 
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2.1 Free Vibration Analysis 

 
For the undamped free vibration analysis, by setting the all mechanical and thermal load to 
zero, it can be shown that following functions satisfy the boundary conditions, Eqs. (7-9), 
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By inserting Eqs.(12-14 )into the equations of motion (1-3), and arranging the terms, one can 
obtain 
[ ] [ ]( ){ } 02 =− ηω MK   (15)  

where { } { }mnmnmn
T WYX ˆ,ˆ,ˆ=η   (16)  

and, [ ]K  and [ ]M are the stiffness and mass matrices, and ω  is the natural frequency of the vibration. 

For every ( )nm, , there are three natural frequencies 2
mniω  and corresponding mnimnimni WYX ,,  

natural modes ( )3,2,1=i . 
 
2.2 Random Vibration Analysis 
 
For the forced vibrations, natural mode method is employed. The response is expanded in 
terms of natural modes [3, 14] 
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where ( )tqmni  is the generalized coordinate. 
Temperature is also expanded in double Fourier sin series as  
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In this study, the temperature is assumed to be distributed linearly through thickness, i.e. 
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where 0T  is the reference temperature at 0=z , and c is the slope of the temperature gradient, 

cf hhh += 2 is the total thickness of the sandwich plate. 
From Eqs. (20-22) and Eq. (6), the thermal moment can be written as 
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Substituting Eqs. (17-19) and (23) into Eqs. (1-3), and from free vibration analysis and the 
orthogonality of the natural modes, one can obtain 
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In this study, it is assumed that random pressure is uniformly distributed, stationary and it has 
a zero mean, correlation function can be given as 
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where the response spectral density can be computed from [14] 
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and ∗  indicates complex conjugate . 
 

3. NUMERICAL RESULTS AND CONCLUSION 
 

Following geometric and material properties are used (unless indicated otherwise): planar 
dimensions: mba 6.0== , mh 04.0= (i.e. )15=ha ; the aluminum (2014-T6) face 
sheets: PaE f

9101.73 ×= , 35.0=fν , 32790 mkgf =ρ ; and the PVC foam 

core: PaEc
61063.103 ×= , 32.0=cν , 3130 mkgc =ρ .The structural damping 05.0=ξ and 

shear correction factor 65=κ  are taken. The core thickness is taken %90  of the total panel 
thickness. First nine natural frequencies of the sandwich panel as function of the side to 
thickness ratios ( )ha  for the FSDT and CPT are compared in Table 1. All natural frequencies 
for the CPT are greater than those for the FSDT. However, discrepancies in natural 
frequencies between these two theories are larger for the thicker sandwich construction. For 
the forced vibrations, the input random pressure rp  acting on the sandwich panel is assumed 
to be a uniformly distributed band limited Gaussian white noise. The spectral amplitude So 
can be computed from 

10/
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pS
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where 0p  is the reference pressure( Pap 5
0 102 −×= ), SPL  is the sound pressure level 

expressed in decibels and ω∆  is the frequency bandwidth ( secrad ). dBSPL 160= is 
assumed for uniformly distributed random pressure, the responses are computed at the mid 
point ( 2,2 byax == ). Figure 1 shows the deflection Root Mean Square ( RMS ) values as 
function of the side to thickness ratios ( ha ).  The RMS responses for the FSDT are greater 
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than those for the CPT in the thicker sandwich construction (i.e. 20≤ha ), they are 
indistinguishable for the thinner sandwiches panels.  
 

Table 1. Natural frequencies 1mnω ( )srad  for square sandwich panels ma 6.0= . ( )9.0=hhc . 
 
 

a/h Theory 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 

5 FSDT 
CPT 

10882 
14368 

21532 
35920 

34006 
71840

21532 
35920

29502
57472

39970
93392

34006 
71840 

39970 
93392 

48488 
129312

10 FSDT 
CPT 

6573 
7184 

14797 
17960 

25922 
35920

14797 
17960

21764
28736

31612
46696

25922 
35920 

31612 
46696 

40003 
64656 

15 FSDT 
CPT 

4592 
4789 

10861 
11973 

20079 
23946

10861 
11973

16547
19157

25054
31130
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20 FSDT 
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6407 
6465 
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Figure 1.  Deflection RMS values vs. the length to thickness ratios for two plate theories  

 
The effect of the core shear modulus on the RMS responses for two theories is shown in 
Figure 2. Discrepancies are larger for the lower core shear modulus. Deflection response 
spectral density is given in Figure 3. As it can be seen from the figure, there exist response 
peaks corresponding to the natural frequencies of the sandwich panel.  Peaks are shifted to the 
right for the CPT. Temperature effect is investigated for the sandwich panel under uniformly 
distributed random pressure of dBSPL 160= . The thermal expansion coefficients are taken 

Cf
061023 −×=α  for the aluminum face sheets and Cc

071023 −×=α  for the foam core. 
Effects of the temperature on the deflection RMS values ( )fhRMS  are compared in Table 2. 
With increased temperature, the RMS response increases, and at elevated temperatures, both 
theories give almost the same RMS values. The deflection RMS due to a random point load 
acting at ( mymx 25.0,025 ** == ) with specified spectral densities is given in Figure 4. 
Discrepancies between these two theories are distinguishable only for the larger input spectral 
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densities. In Conclusion, it is necessary to use a refine theory for an accurate analysis of 
sandwich panels under random excitation. 
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Figure 2. Deflection RMS values for different Core Shear Modulus. 

  ( ma 6.0= , 15=ha , ( )9.0=hhc ). 
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Figure 3. Deflection Response Spectral Density. 

 
Table 2. Temperature effect on the RMS response ( )2=c  

 
Theory CT o00 =  20 40 60 80 100 120 

FSDT 0.5140 0.6521 0.9531 1.3091 1.6856 2.0714 2.4622 
CPT 0.4890 0.6331 0.9412 1.3017 1.6811 2.0692 2.4618 
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Point Load Spectral Density, SF, (N2/Hz)
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Figure 4. Response to random point load 
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