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Abstract 
 
The numerical prediction of sound fields radiated or scattered from complex shaped structures 
into the three-dimensional space can be performed effectively by using the boundary element 
method (BEM). However, at high frequencies, it is often necessary to deal with discretized 
structures consisting of many thousand finite surface elements, in order to ensure a sufficient 
number of elements per wavelength. Consequently, the computational cost of the method 
grows considerably with increasing frequency. Thus, suitable approximations tailored to the 
high frequency range can reduce computational time drastically. Several such techniques are 
known. In this paper, the theoretical framework of the Rayleigh integral and the plane wave 
approximation (PWA) for the radiation problem will be explained and compared with each 
other. For the scattering problem, the so-called Kirchhoff approach is often used. On the other 
hand, the Rayleigh integral and the PWA can also be applied to the scattering problem, since 
it can be formulated as an equivalent radiation problem. The theory of the three 
approximations will be presented and compared with respect to the scattering problem, too.  
In the present and in an accompanying paper [1], the Kirchhoff approach and the PWA will be 
applied to the scattering of plane waves from cylindrical shells located in free space for a 
frequency range up to 100 kHz.  

1. INTRODUCTION 

High frequency approximations combined with the BEM are very useful for obtaining fast 
numerical results of radiation or scattering problems. However, since several different but 
similar approaches exist, based on various simplifications, it is sometimes not easy to decide 
which method is most suitable for a particular problem. For that reason, the purpose of the 
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present paper mainly is to review some important high frequency approximations like the 
PWA, the Rayleigh integral, and the Kirchhoff approximation, in order to explain the 
corresponding theoretical background descending from the theory of integral equations, and 
to discuss deviating numerical results for a specific scattering problem. 

2. THE BOUNDARY INTEGRAL EQUATIONS FOR THE RADIATION 
PROBLEM 

A vibrating structure radiates sound into the surrounding space. The radiated sound field is 
characterized by sound pressure p, sound velocity v , and derived quantities such as the sound 
intensity I , the radiated sound power P, the radiated efficiency σ etc., which shall be 
calculated by numerical methods.  
As shown in Fig. 1, the bounded volume of the radiating structure in three-dimensional space 
is denoted by B (like Body). The interior of B is called Bi and the exterior Be. The surface 
normal n should be directed into the exterior Be.  
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Fig. 1: Geometry of the radiation and scattering problem 

A compilation of the formulas given below can be found in the book “Formulas of Acoustics” 
[2]. The most frequently used integral equation formulation in acoustics is the well-known 
Helmholtz integral equation (abbreviation HIE) for exterior field problems. The HIE is 
obtained by applying Green’s second theorem to the Helmholtz equation (see for example [3-
5]). Depending on the location of the field point x, the HIE takes the form 
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is the free-space Green’s function, and y is a spatial point on the structural surface S. The 
geometrical notations are chosen as shown in Fig. 1. Eqs. (1a), (1b), and (1c) are called 
exterior HIE, surface HIE, and interior HIE, respectively. 
For simplicity, we only consider the most important Neumann boundary value problem, 
which describes a body, that vibrates with normal velocity v. Therefore, the pressure gradient 
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is prescribed on S. Here, ρ is the fluid density and n∂∂ /  is the derivative in the direction of 
the outward normal n. 
For calculating the quantities of the sound field using the complete BEM, two steps are 
necessary. First, the surface HIE (1b) has to be solved which gives the pressure on the surface 
of the structure. This procedure requires the main effort, since a complex, fully populated, and 
unsymmetrical system of linear equations has to be solved. Second, the sound field in the 
whole outer space can be calculated with the help of the exterior HIE by an integration over 
the surface S. The main advantage of the high frequency approximations presented below is, 
that the first time-consuming step becomes redundant, since the surface pressure – or in the 
general case both field quantities on the surface - will be estimated approximately, so that 
only the exterior integral equation (1a) has to be evaluated. 

3. THE BOUNDARY INTEGRAL EQUATIONS FOR THE SCATTERING 
PROBLEM 

The scattering problem can be formulated as an equivalent radiation problem by the following 
procedure (see [2]): Considering, for example, the sound-hard scatterer, the normal velocity 
vin of the incident pressure wave pin will be evaluated at the surface S where the scatterer is 
assumed (for the moment) to be sound transparent. If B is now vibrating with the negative 
normal velocity ( )inv− , the radiated sound pressure is identical to the pressure ps scattered 
from B due to the incident wave inp . Hence, instead of (2), we simply have 
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for the scattering problem, which again is an inhomogeneous boundary condition like (2).  

However, sometimes it is more convenient to have an explicit boundary integral equation for 
the total pressure insT pppp +==  as starting point for a numerical calculation. The scattered 
wave sp  has to fulfill the exterior Helmholtz formula (1). The incident pressure inp  is 
assumed to have no singularities in Bi, and hence, it must satisfy the interior Helmholtz 
formula 
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 By adding both Eqs. (1) and (4), one gets the Helmholtz formula  
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for the total pressure p. Assuming that the surface of the scatterer is rigid, the pressure 
gradient vjnp ωρ−=∂∂ /  on the surface is zero. Hence, for a rigid scatterer the boundary 
integral equation (5a) can be written as 
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4. THE RALEIGH INTEGRAL AND THE PWA 

For deriving the Rayleigh integral (see [5], [6]), it is assumed that the vibrating part of the 
radiating body is embedded in a plane rigid baffle. Such an asumption is approximately valid 
for high frequencies and a weak curvature of the surface B. By using the half-space Green’s 
function over an infinite rigid plane, Eq. (1a) simplifies to the Rayleigh integral 
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S
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which gives an exact solution for a radiator in a plane rigid baffle.  

On the other hand, if we assume that pressure and normal velocity on the surface of the 
radiatior are satisfying  
 
 np cv= ρ  , (8) 
 
we get from Eqs. (1a) und (2) the so-called plane wave approximation (PWA) 
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(er is the unit vector in the direction r ), 
we obtain 
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As observed by Herrin et al. [6], the PWA is identical with the Rayleigh integral in the high-
frequency range where 1>>kr , but only when we assume, that ( ) 1, −=rer . This assumption 
means that only the vibrating part of the surface S, which can be seen for the receiver point x, 
should be taken into account when performing the integration over S. Hence, for applying the 
Rayleigh integral, we have to differentiate between the “visible” and the “invisible” part of 
the structure (see [6]), which is not necessary when using the PWA. 
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5. THE KIRCHHOFF APPROXIMATION 

There are several slightly different representations of the Kirchhoff approximation in the 
literature. Originally, the approach was suggested by Kirchhoff for treating the diffraction of 
light when passing through apertures. In order to calculate the light intensity behind the 
aperture, Kirchhoff assumed that the field u and its normal derivative are zero on the back 
side of the screen and are equal to the values of the unperturbed incident wave on a surface 
overstretching the aperture in first approximation (more details can be found in [7]). By 
inserting these values into the KIE (1a), a first approximation of the light intensity behind the 
aperture can be computed.  
For acoustics, the same procedure is explained in ([8], end of page 169), if there is an aperture 
D. However, if there is only a screen without a hole, it is recommended that the total pressure 
on the front side of the screen is substituted by the incident field. However, we are of the 
opinion that only the scattered pressure has to be substituted. Also, Skudrzik [5] mentioned 
that one has to substitute the incident field in the aperture and on the illuminated surface. 
However, the total sound pressure on the screen depends on the boundary condition on the 
screen. For example, if the screen, which can be identified with the scattering object, is rigid, 
the reflection coefficient R becomes 1, and hence a suitable approximation would be to 
assume that the pressure on the boundary is twice the incident pressure, just as it occurs in the 
Rayleigh integral. Taking this fact into account, it was recommended in [9] to introduce R 
explicitly by writing 
  
 ins Rpp =  (12) 
 
and due to  ( ) 1, −≈nein for illuminated elements, we get approximately for plane waves 
 

 
n

pR
n
p ins

∂
∂

−=
∂
∂  . (13) 

 
Here, ein is the unit normal vector in the incidence direction of the incident wave. 
Inserting (12) and (13) into (5a) and performing the surface integral only over the illuminated 
part Sill , which means that ( ) 0, <rer , of the surface we get (see [9]) 
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For R = 1, we obtain 
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On the other hand, by inserting the assumption of the PWA for an incident plane wave 
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into Eq. (6), we get 
 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

 ( ) ( )( ) ( )
( ) ( )yds
yn
yxgneypp

S
inins ∫∫ ∂

∂
−=

,,1 . (17) 

 
If we again restrict the surface integral only to the illuminated part of the surface with 
( ) 1, −=nein , instead of ( ) 0, <rer , the formula for the PWA becomes identical with the 
Kirchhoff approximation (15). The part of the structure, where ( ) 1, −=nein  holds, is of course 
the dominant source for scattering, especially in the high frequency range. In summary, the 
Kirchhoff approximation and the PWA are leading to the same result, if plane wave scattering 
from a rigid structure and only the illuminated part of the surface is considered. 
A similar statement can be found in [10, p. 325]: In the Kirchhoff approach, only the 
iluminated region of the scatterer is taken into account and every element of this area is 
considered as embedded in an planar infinite rigid baffle. 
 

6. COMPARISON BETWEEN THE PWA AND THE KIRCHOFF APPROACH 
–NUMERICAL RESULTS 

 
In Fig 2, the scattering object is shown. It is assumed that a plane wave travelling along the 
negative y-axis (from point 1 to point 2) is impinging on the rigid structure.  
 

 
 

Fig. 2: Scattering object 
 

In Fig. 3 and Fig. 4, the target strength 
 
 ( )ins pprTS /lg20 ⋅=  (18) 
 
in point 1 and point 2, respectively, calculated with the PWA and with the Kirchhoff 
approximation (KIA) is shown. 
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Fig. 3: Frequency curves of the TS in dB at point 1; red PWA, green KIA  
 
 

 
 

Fig. 4: Frequency curves of the TS in dB at point 2; red PWA, green KIA  
 

Fig. 3 shows that the agreement between both methods is very good for a field point lying on 
the illuminated side of the target. However, if the field point is on the backside of the 
scattering object, a difference of about 2 dB can be observed over nearly the whole frequency 
range (see Fig. 4). More numerical results up to 100 kHz can be found in the accompanying 
paper [1]. 
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7. CONCLUSIONS 

The correlations between the different high-frequency approximation PWA, Rayleigh 
integral, and the Kirchhoff approximation are discussed. It is shown that the PWA leads to the 
Rayleigh integral for radiation problems, if 1>>kr  and if the integration is only performed 
over the visible part of the structure. The PWA leads to the Kirchhoff approximation for 
scattering problems, if only the illuminated part of the surface is considered for plane wave 
scattering from a rigid structure. The numerical scattering results from a cylindrical shell 
confirm these observations. 
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