NOISE AND VIBRATION OF POSITIVE DISPLACEMENT COMPRESSORS – A REVIEW

Malcolm J. Crocker

Department of Mechanical Engineering, Auburn University
270 Ross Hall, Auburn University, AL 36849-5341, USA
crockmj@auburn.edu

Abstract
Compressors are used widely throughout the world in household appliances, air-conditioning systems, vehicles and industry. It is clear that reducing noise and vibration is important in these applications. Various compressors are used for different applications and there are a large number of quite different designs. The compressor design adopted for each application depends upon several factors, including the gas or working fluid which must be compressed, and the discharge pressure and flow rates that need to be achieved. There are two basic types of compressor: 1) positive displacement compressors including reciprocating piston, and rotary types, and 2) dynamic compressors including axial and centrifugal types. This paper will discusses noise and vibration sources in positive displacement compressors and various approaches that have been used to reduce the noise generated. In addition some case histories of compressor noise reduction are be reviewed.

1. INTRODUCTION

Compressors are usually classified as either (1) positive displacement or (2) dynamic machinery types. Positive displacement compressors work on the principle of trapping a volume of gas and then, through the mechanical action of the machinery, reducing its volume and thus increasing its pressure. Dynamic compressors, on the other hand, work on the principle of using bladed impellers on continuously flowing gas to increase its kinetic energy, which is eventually converted into potential energy and gas of higher pressure. Positive displacement compressors can be further subdivided into 1) reciprocating types: piston, diaphragm or membrane, and 2) rotary types: screw, vane, or lobe. Positive displacement compressors are normally used for small flow rate capacity requirements such as in household refrigerators or room air conditioners. For higher flow rate capacities, valve and seal leakage, mechanical friction, and flow effects quickly decrease the efficiency of positive displacement compressors. This paper will concentrate on the noise of positive displacement compressors.
2. POSITIVE DISPLACEMENT COMPRESSORS

2.1 Reciprocating Piston Compressors

The reciprocating compressor was the first type designed for commercial use. It sees service in a wide variety of industrial and household applications such as refrigerators and heat pumps and it remains the most versatile compressor design. It can operate economically to produce very small pressure changes in the deep vacuum range up to very high pressures. The operation of a reciprocating piston compressor is in many ways similar to that of an internal combustion engine, although the design of such small compressors is simpler. The mechanical system of a typical small refrigerator compressor is comprised of an electric motor driving a reciprocating piston pump mechanism. Two thin metal “reed” valves are provided. As the piston moves to compress the working gas during the compression stroke, the suction valve closes and the discharge valve opens. After the piston has reached top dead centre, and it begins the suction stroke, the suction valve opens and the discharge valve closes.

2.2 Diaphragm compressors

Diaphragm compressors are a form of piston compressor. The diaphragm separates the gas undergoing compression on one side from the hydraulic working fluid on the other side. A piston is provided to force the hydraulic fluid upwards; it is commonly driven by an electric motor via a connecting rod, which is eccentrically connected to the motor drive shaft. As the piston moves up, it displaces the incompressible hydraulic fluid upwards making the diaphragm move up also. The membrane is sandwiched between two perforated metal plates which allow hydraulic fluid to flow through the perforations in the lower plate and gas to flow through the perforations in the upper plate. When the piston is at top dead centre, the diaphragm is pressed hard against the underside of the top plate by the hydraulic fluid and the discharge valve has already opened, but is ready to start closing. On the piston down stroke, the diaphragm is drawn downwards thus allowing the intake valve to open and a fresh charge of gas to enter above the diaphragm to be compressed on the next upward stroke of the piston.

2.3 Screw compressors

Screw compressors are formed by the intermeshing action of two helical rotors. The rotors are comprised of two types: male and female. The male rotors have convex lobes and the female rotors have convex flutes. The gas to be compressed enters through the inlet port and is trapped by the rotors which continually reduce the volume available to the gas until it is expelled through the discharge port. A typical screw compressor has four lobes on the male rotor and six flutes on the female rotor. In such an arrangement the compressor has six compression cycles during each revolution of the female rotor, which is operated at two thirds of the male rotor speed. Screw compressors have the advantages that they are 1) lighter and more compact than reciprocating compressors and 2) that they do not have reciprocating masses requiring expensive vibration isolation.

2.4 Lobe or “Roots” compressors

One of the oldest and simplest designs of compressor is known as a straight lobe or “Roots” compressor. This type of compressor normally employs two identical cast iron rotors. Each rotor has a figure eight shape with two rounded lobes. As the rotors turn they sweep the gas into a constant volume between the rotors and the compressor case wall. Compression takes place as the discharge port becomes uncovered. Initially backflow occurs from the discharge
line into the casing cavity, until the cavity pressure reaches the compressed gas pressure. The
gas flow then reverses direction and further rotation of the rotors causes increasing gas
pressure with a reducing gas volume as the gas is then swept into the discharge line. Lobe or
“Roots” compressors have the advantage of being low cost and needing low maintenance.
They have the disadvantage that they are 1) less efficient than screw or centrifugal
compressors, 2) they only achieve low pressure increases, and 3) they are inherently noisy
because of the high frequency flow reversal which occurs at the discharge port.

2.5 Sliding vane compressors

The sliding vane compressor consists of a rotor mounted in an eccentric casing. Non-metallic
sliding vanes are fitted to the rotor in slots. The vanes are held in contact with the casing by
centrifugal force. The gas is taken in from the suction inlet and discharged through the port.
The gas is trapped and sucked into volumes which increase with vane rotation up to top dead
centre. The trapped gas is then compressed as the trapped gas volume continually decreases
after top dead centre (TDC). There are no inlet and discharge valves. The times at which the
inlet and discharge ports are open are determined by the time when the vanes are located over
the ports. The inlet port is designed to admit gas until the gas “pocket” between the two vanes
is largest. The port closes when the second vane of that pocket passes the inlet port. The gas
pocket volume decreases until the vanes have passed TDC. Compression of the gas continues
until the discharge port opens when the leading vane of the pocket passes over the discharge
port opening. The discharge port closes when the second valve passes the end of the port.

2.6 Rolling piston compressors

Rolling piston rotary compressors are widely used because they are small in size, lightweight
and efficient. Small rolling piston rotary compressors are often driven by electric motors. The
rolling piston is contained in a cylinder and the piston is connected to a crankshaft
eccentrically mounted to the drive shaft of the motor. The stator of the electric motor is
normally fixed to the interior of a hermetic shell. A spring mounted sliding vane is provided.
As the piston rotates inside the cylinder, the volume of gas trapped ahead of the piston,
between the piston, cylinder and vane is reduced and the gas is expelled through the
discharge. Simultaneously gas is sucked into the increasing volume following the piston.
After the piston has passed top dead centre and the inlet, the volume of trapped gas ahead of
the piston is decreased again as the piston moves further towards the discharge valve and the
compression cycle is repeated.

2.7 Orbital Compressors

So-called orbital compressors have many good characteristics such as high efficiency, good
reliability and low noise and vibration. A common type of orbital compressor is the scroll
compressor which uses two interlocking, spiral-shaped scroll members to compress
refrigerant vapor. Such compressors are in common use in residential and industrial buildings
for air-conditioning and heat-pump systems and also for automotive air-conditioners. They
have high efficiency and low noise, but have poor performance if operated at low suction
pressures. They also need good lubrication. Scroll compressors normally have a pair of
matched interlocking parts, one of which is held fixed and the other made to perform an
orbital path. Contact between the two scrolls happens along the flanks of the scrolls and in the
process a pocket of gas is trapped and progressively reduced in volume during the rotary
motion until it is expelled through the discharge port. Most scroll compressors are
hermetically sealed inside a shell casing.
3. NOISE CONTROL OF POSITIVE DISPLACEMENT COMPRESSORS

3.1 Noise Control of Small Reciprocating Piston Compressors

All of the main sources of noise in a small reciprocating compressor originate from the compression process. The sources include: 1) gas flow pulsations through the inlet and discharge valves and pipes, 2) gas flow fluctuations in the shell cavity, which excite the cavity and shell modes, 3) turbulent eddy formation in the shell cavity and inlet and exhaust pipes, 4) vibrations caused by the mechanical system rotation of the drive shaft and out-of balance reciprocating motion of the piston, connecting rod, and 5) impulsive motion of the valves and impacts they cause. Electric motors are the normal power sources. The noise and vibration are transmitted in four main ways: 1) refrigerant gas path, 2) discharge tube path, 3) suspension system path, and 4) lubricating oil path. All four paths lead directly or indirectly to the compressor shell, which after its modes are excited into vibration, radiates noise. Figure 1 gives a cut-away drawing of a typical reciprocating piston compressor.

With such a reciprocating piston system, impulsive noise is created by mechanical impacts caused by rapid closure of the suction and discharge valves. Also, since the fit of the piston in its cylinder is not perfect, and a small amount of clearance must be provided, the gas forces on it caused by compression make it “rock” from side to side resulting in impacts known as “piston slap.” This is another potential source of radiated noise. Blow-by noise caused by the piston/cylinder clearance can sometimes also be important. Although steady non-turbulent flow, in principle, does not cause the creation of sound waves, fluctuating flow does, and impulsive flow changes caused by the rapid opening and closing of the suction and discharge valves create sound waves which propagate throughout the inlet and discharge pipework. The mechanical system is normally hermetically sealed in a compressor shell. Such compressors are expected to have an operating life of 10 years or more.

Figure 2 presents a schematic of the main noise and vibration sources in a reciprocating piston compressor used in household refrigerators, air conditioners or heat pumps. In many such compressors, the noise and vibration sources are strongly correlated (inter-related) and it is difficult to separate them.\(^1\)\(^2\) In a typical household refrigerator, besides the airborne noise radiated from the compressor shell, airborne noise is also produced by the cooling fan, flow-induced noise of the refrigerator, and structure-borne noise caused by all of these sources, which is then radiated as airborne noise by the refrigerator itself. Thus, in order to study the compressor noise experimentally, it is necessary to remove the compressor from the refrigerator and mount it in a load stand which provides the compressor with the correct refrigerator and pressure conditions. The load stand noise sources are separated from the compressor noise stand in well designed experiments.\(^1\)\(^-\)\(^2\)
3.1.1 Vibration and Noise Measurements on Reciprocating Piston Compressors

Figure 3 presents measured time history results obtained on a small reciprocating piston compressor. It is observed that there is no obvious close correlation between the vibration of the body vibration (V1) and the low frequency sound pressure (noise) (P4). The compressor working fluid has a discrete frequency component of 240Hz in the discharge pressure and of 480Hz in the suction pressure. In such a compressor, modification of the fluid path volumes and pipe diameters to ensure that none of these frequency components match with the shell cavity volume natural frequency normally helps to reduce the low frequency compressor noise in the range of 25-1000 Hz. The fundamental acoustic natural frequency of the cavity depends on its temperature of operation and can be excited momentarily if the excitation frequency passes through this natural frequency during compressor start-up and/or shut-down.

3.1.2 Improved Design of Suction Muffler

Other methods of noise control include improved suction muffler design. In this design, the compressor pump unit consists of a piston-cylinder block mounted on top of an electric motor. The compressor pump-motor unit is enclosed in a 3 mm thick hermetic steel shell, which, together with the suction and discharge lines, connects the unit with the appliance. A cut through view of the muffler is shown in Fig. 4(a) and of a BEM model of it in Fig. 4(b).
When the compressor was operated under appliance conditions, it was observed that the sound power increased in the 800 Hz, 3.2 kHz and 4 kHz one-third octave bands. Separate experiments on the compressor showed that the dominating source of noise in these bands is caused by the suction valve. Pressure pulsations near to the inlet of the suction valve were thought to excite cavity modes. The lowest cavity modal resonance frequencies are at about 620 and 720 and they have associated sound pressure distributions which are favorable at exciting shell deformed (breathing) modes of the hermetic shell. Unfortunately these shell vibrations have rather high radiation efficiencies. These cavity resonances are assumed to be responsible for the high sound power levels in the 630 and 800 one-third octave bands.

Two other resonance frequencies were found to be very important with this compressor. These are the shell vibration natural frequencies of 2970 Hz and 3330 Hz. These presumably are responsible for the high sound power levels in the 3.2 kHz one-third octave band. The original suction muffler used in this compressor possesses two chambers connected in series by the inlet and the flow guide tube. See Figs. 4a, and 4b. Figure 4c shows a schematic diagram of the mode used to analyze the insertion loss of the suction muffler system.

The insertion losses measured and that predicted using a BEM model are shown in Fig. 5a. It is observed that there is very good agreement up to a frequency of almost 2000 Hz. Above that frequency, the prediction is not so accurate, presumably because the BEM mesh size used was not small enough.

The BEM program used to predict the IL was run changing two variables U and V (see Fig. 4c). By increasing the slit between the inlet suction tube and the flow guide tube from 2.4 mm to 4.8 mm and moving the bending portion of the flow guide tube 1.4 mm in the direction of the arrow (see Fig. 4c) BEM predictions showed that the muffler insertion loss was improved. This is shown in the predictions in Fig. 5b. The sound power radiated at the four resonances 620 Hz, 720 Hz, 2970 Hz, and 3300 Hz is reduced.
3.1.3 Reed Valve Vibration and Noise

Noise reduction has also been achieved on a reciprocating piston compressor by modification of the piston cylinder head and valves. Figure 6a shows a schematic of a standard compressor cylinder head, piston and valves before modification, and Fig. 6b shows the same compressor parts after modification. The modified compressor had a special piston and suction valve. This piston has a small “tap” attached to its upper surface which is made to fit into the discharge port when the piston reaches top dead center of its stroke. With the use of the “tap” the new piston assembly reduces the clearance volume when the piston is at top dead center and this prevents back flow occurring during the suction stage, thus permitting the use of thinner suction and discharge “reed” valves. Use of the thinner reed valves changes the suction and discharge process and reduces the valve impact excitation and resulting compressor vibration response. It was found that these changes produced reductions of 3 dB in both the suction and discharge space-averaged externally radiated A-weighted sound pressure levels.

3.1.4 Shell Vibration

The noise radiated by the compressor of a household refrigerator is mostly caused by the noise radiated by the compressor shell. Many attempts have been made to study and understand compressor shell radiation from small compressors. In one small refrigerator compressor, modal analysis tests, sound intensity contour plots and sound power frequency spectra were measured to try to identify sources and paths of vibration/noise energy transmission. Results show that the sound power radiated is dominant in two one third octave bands at 800 Hz and 3150 Hz. Further investigation with excitation by a calibrated impact hammer and use of modal analysis software revealed that two modes of vibration at 2810 Hz and 3080 Hz were responsible for the intense sound generated in the 3150 Hz one-third octave frequency band. The modal analysis contour plots and the mode shapes show that for this compressor the intense sound in the 3150 Hz one-third octave band is radiated predominantly by the 2810 Hz and 3080 Hz modes from the bottom of the compressor shell. The intense
noise radiated in the 800 Hz one-third octave was found to be related to forces fed through the compressor spring mounts to the shell resulting in shell sound radiation.\(^6\)

Most small compressor shells have a cylindrical shape, of either circular or elliptical cross section with doomed end caps at each end of the cylinder. The shell modes of vibration can be grouped into three main classes: 1) \textit{cylindrical modes} in which large deflections of the cylindrical part of the shell occur, but the end plates remain essentially undeflected, 2) \textit{top-bottom modes} in which large deflections of the end plates occur leaving the cylindrical part largely unaffected, and 3) \textit{mixed modes}, in which both the cylindrical and end plates undergo deflections simultaneously. Cossalter et al. studied the vibrations of a shell to the main excitation forces: a) discharge pipe force, and b) spring suspension forces.\(^7\) They showed that, with the elliptical cylinder shell studied, for the same force amplitude, the discharge pipe force excites more modes and the 7th mode having a natural frequency of 2676 Hz with the greatest vibration amplitude. Figure 7 shows the location and direction of the discharge pipe force. Fig. 8 gives the response in the 7th mode which is the most excited.

![Fig. 7 Location and direction of the discharge pipe force.\(^7\)](image1)

![Fig. 8 Deformed shape of the shell when 7th mode is excited.\(^7\)](image2)

Using a different number of spring support systems, moving the location of the spring supports relative to the discharge pipe location, ensuring that the compressor shell natural frequencies are not close to any internal forcing frequencies, and increasing the shell damping can also all be effective in reducing the compressor shell radiated noise.

REFERENCES