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Abstract 
The vibrational characteristics of a dynamic system can be sensitive to variations in 
parameters such as its material properties and this sensitivity increases as the frequency 
increases. Since, for most practical structures, their geometric or material properties are not 
exactly known, prediction methods for the dynamic response of a structure with uncertain 
properties generally requires some model for the statistics of its natural frequencies. In this 
paper, the effect of uncertainty in the material parameters and dimensions of a plate on the 
variability in its vibrational characteristics is presented using a technique called the interval 
factor method. With this method, the lower bound, upper bound and mean values of the 
natural frequencies and modeshapes have been determined where the density, Young’s 
modulus and plate thickness were allowed to vary within a predefined band. 

1. INTRODUCTION 

In the mid to high frequency ranges, the dynamic characteristics and responses of structures 
can be greatly affected by small changes in parameters such as material properties and 
structural dimensions, as well as variation in operating conditions. For many dynamic systems 
there is a degree of uncertainty about these parameters. Deterministic modelling techniques 
such as finite element analysis (FEA) are limited in the mid to high frequency range by the 
computational expense required to model a structure at these frequencies. A very large 
number of degrees of freedom are needed for complex models to accurately capture the short 
wavelength deformation at high frequencies. A number of techniques have been developed to 
extend the use of FEA to the mid frequency region. Monte Carlo simulations have been used 
to this affect however they are restricted by the computational expense required to calculate a 
solution [1]. A quasi-Monte Carlo method can be used to reduce the time taken in 
computation [2]. Higher order perturbations methods [3, 4] are similarly restricted by 
computational time and power as well as the amount of information required to model joints 
between subsystems [5]. An analysis of the uncertainty of a system has been completed using 
Latin hypercube sampling [6]. This method was found to have advantages over random 
sampling for complex systems.  
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Interval analysis was first developed by Moore [7] in the 1960’s. The application of 
interval properties to various systems has been discussed by Moore [8] and Alefeld and 
Herzberger [9]. The basic idea of this method, applied to the structural response of a system, 
is to determine the band that a particular response might fall into. This is dependent on the 
structural parameters which are allowed to vary within a fixed range, where this range is 
denoted by an upper and lower limit. The interval analysis method has been applied to 
determine the eigenvalues and eigenvectors of truss structures with uncertain material 
properties [10]. The method has been shown to be robust. Unlike various stochastic methods, 
it also allows the upper and lower response limits to be calculated for the case where the 
probability distributions of the uncertain parameters are not known [11, 12]. Research has also 
been conducted into the static displacement of structures using a combination of interval 
analysis and matrix perturbation methods [13-16].  

This paper presents the use of the interval factor method to determine the eigenvalues 
and eigenvectors of a plate in flexure, in which the material and geometric properties were 
allowed to vary within fixed intervals. In this method, each parameter variation is expressed 
in terms of interval factors. Results are presented for the variation in the natural frequencies 
and modeshapes due to uncertainty in any of the individual parameters. The benefit of this 
method is that it allows the upper and lower limits of the natural frequencies and modeshapes 
to be determined by solving only one finite element solution. 

2. INTERVAL FACTOR METHOD 

In this section, a brief review of the interval analysis method is presented. [ ]xxX I ,=  is as a 
real number where x  and x  are respectively the lower and upper limits of the closed interval 
in which IX  lies. IX  can be written in the form [7, 8, 13] 
 

 [ ]xxxxX ccI Δ+Δ−= ,  (1) 
 
where cx  is the mean value of IX  and xΔ  is the uncertainty of IX . These are determined by 
the following equations 
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Introducing the interval factor I
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IX can now be defined as 
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f

cI XxX =  (6) 
 
From equations (4) and (5), the interval ratio is given by 
 
 c

f xxx /Δ=Δ  (7) 

3. FINITE ELEMENT ANALYSIS OF A PLATE IN FLEXURE 

In order to analyse the deterministic vibrational characteristics of a plate in flexure, a finite 
element approach has been chosen. For this purpose, a 4 node element has been used. This 
element has 12 degrees of freedom corresponding to one translational and two rotational 
degrees of freedom per node. The mass and stiffness matrices for each individual element are 
calculated by Petyt [17] and are given by equations (8) and (9), respectively. eE  is the 
Young’s modulus, eρ  is the density, eν  is Poisson’s ratio and eh  is the thickness of the 
element. ][n  and ][d  are sub matrices which are functions of the element dimensions, a and b. 
These sub matrices are described in the Appendix. 
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4. INTERVAL EIGENVALUE ANALYSIS OF A PLATE IN FLEXURE 

In the following analysis, the variations in the Young’s modulus E , density ρ  and thickness 
h  of a thin plate structure are considered. Each parameter is assumed to vary within the 
interval ratio which is constant across each element of the plate. The interval variables for the 
individual parameters can be described in terms of the interval factor and the deterministic or 
mean value 
 
 ,cI
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f
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f
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e hhh =  (10)-(12) 

 
where I

fE , I
fρ  and I

fh  are the interval factors which represent the variation in the parameters 
for all the elements of the plate. The mass and stiffness matrices of the elements can now be 
described in terms of a deterministic component and the interval factors. 
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Equations (13) and (14) can be written more simply as equations (15) and (16). The 
deterministic matrices are of the same form as equations (8) and (9) and are constructed by 
using the mean properties, cE , cρ  and ch . 
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The mass and stiffness matrices of each element can be combined for the whole plate by use 
of the transformation matrix [ ]eT  which locates the element matrix within the global 
coordinates.  
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The natural frequencies can now be found in terms of the deterministic natural frequencies 
and the interval factors. The subscript j represents the degrees of freedom. Again the 
deterministic components have the mean properties, cE , cρ  and ch . 
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Thus the lower and upper limits and the mean of the natural frequencies can be calculated in 
terms of the interval ratios fEΔ , fρΔ  and fhΔ , and are given by equations (20) to (22), 
respectively.  
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Similarly, the modeshapes can be found in terms of the interval factors. The decoupled mass 
and stiffness matrices are [18] 
 
 { } [ ] { } [ ]IIT =φφ m ,              { } [ ] { } [ ]2ωφφ diagIT =k  (23), (24) 
 
Equation (24) can be described in terms of the interval factors and the deterministic 
components 
 

 ( ) { } [ ]{ } ( )[ ]2

detdetdet

3 I
j

T
j

I
f

I
f

I
f

I
f diaghE ωφφφφ =k  (25) 

 
Substituting equation (19) into the right hand side of equation (25) yields 
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Equations (26) and (27) are used to express the lower and upper bounds of the modeshapes in 
terms of the interval ratios and are given by equations (28) and (29), respectively. These lower 
and upper bounds represent the amplitude change in the eigenvectors of the system, not a 
physical change in shape of the mode. It should be noted that the upper and lower values of 
the modeshape interval do not correspond to the upper and lower values of the natural 
frequency interval.  
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5. COMPUTATIONAL RESULTS 

The interval analysis method has been applied to an aluminium plate. The plate has a nominal 
thickness of 2 mm, Young’s modulus of 70 GPa, density 2800 kg/m3 and Poisson’s ratio of 
0.3. The dimensions of the plate are 600 mm x 900 mm and it has been meshed using 
elements with a maximum length of 10 mm such that the results are accurate to 4000 Hz. 
Simply supported boundary conditions have been applied to all edges of the plate.  

The intervals for the natural frequencies and the modeshapes have been calculated by 
varying the properties of the plate by ±1%. The results are presented in Table 1 for the 73rd 
mode which corresponds to a natural frequency of 919.2 Hz. It can be seen that the variation 
in frequency is more sensitive to uncertainty in the plate thickness than density or Young’s 
modulus. As expected, if more than one parameter is allowed to vary, the frequency deviation 
increases.  

Table 2 shows the ratio change in the jth natural frequency from the original 
deterministic natural frequency. The ratio change in the modeshapes is given in Table 3. The 
results show a noticeable variation in the natural frequency even with a relatively small 
percentage change in the parameters. In addition, the variation increases with frequency. For 
example, if all three parameters are allowed to vary by 1%, a natural frequency at 2000 Hz 
could vary by 40 Hz, but at 4000 Hz the difference is as much as 80 Hz. In Table 3, it can be 
observed that the variation in the amplitude of the modeshape is only dependent on the 
density and plate thickness. For each of these parameters, the modeshape ratio is the same.  
 

Table 1. The frequency bounds for a natural frequency at 919.2 Hz with parameters varying by 1%. 
 

Properties 
73ω  (Hz) c

73ω  (Hz) 73ω  (Hz) 
0,0%,1 ==±= Ehρ  914.6 919.2 923.8 
0%,1,0 =±== Ehρ  910.0 919.2 928.4 

%1,0,0 ±=== Ehρ  914.6 919.2 923.8 
0%,1%,1 =±=±= Ehρ  905.5 919.4 933.1 

%1,0%,1 ±==±= Ehρ  910.0 919.3 928.4 
%1%,1,0 ±=±== Ehρ  905.4 919.3 933.0 

%1%,1%,1 ±=±=±= Ehρ 900.9 919.5 937.7 
 

Table 2. The natural frequency ratio for parameters varying by 1%. 
 

Properties jj ωω /Δ  
0,0%,1 ==±= Ehρ  0.005 
0%,1,0 =±== Ehρ  0.01 

%1,0,0 ±=== Ehρ  0.005 
0%,1%,1 =±=±= Ehρ  0.015 

%1,0%,1 ±==±= Ehρ  0.01 
%1%,1,0 ±=±== Ehρ  0.015 

%1%,1%,1 ±=±=±= Ehρ 0.02 
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Table 3. The modeshape ratio for parameters varying by 1%. 
 

Properties { } { }jj φφ /Δ  
0%,1 =±= hρ  0.005 

%1,0 ±== hρ  0.005 
%1%,1 ±=±= hρ  0.01 

6. CONCLUSIONS 

The interval factor method has been used to determine the effect of parameter uncertainty on 
the natural frequencies and modeshapes of a simply supported plate. Using this method, the 
lower and upper bounds and the mean value of the vibrational characteristics have been 
found. As expected, as the frequency increased the affect of the uncertainty on the vibrational 
characteristics also increased. It is expected that similar results could be obtained for a panel 
with any boundary conditions. The significant advantage of this method is the short time 
required to compute the results. 

This work was carried out by funding provided by the Australian Research Council 
under an ARC Linkage grant LP0454302. 
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APPENDIX 

The following equations are the sub matrices for the mass and stiffness matrices for each 
individual element, given by equations (7) and (8). a and b refer to the width and length of 
each plate element. 
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The remaining stiffness sub-matrices are described by the following matrix multiplications 
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