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Abstract 
 
The characteristics of dynamic and acoustic radiation of a damaged stiffened panel are 
investigated by using FEM/BEM. The modes of damages are introduced into the finite element 
analysis. Isotropic damage modes are modeled by globally and isotropically softening the 
stiffness. Based on Mindlin theory, a shell element model is built to model the healthy and 
damaged structures and to calculate the dynamic characteristics and response of a structure 
surface. With the linear boundary element, the sound pressure of structure radiating outwards 
can be calculated and the radiated power and directivity can then be obtained. The influences of 
various locations and extents of damages on vibration and acoustic characteristics are studied. 
An analysis method has been established to analyze acoustic behavior of a damaged structure. 
Conclusions have been drawn from the analyses of some typical examples. The proposed 
method is useful for assessing the influences of the damages present in a stiffened panel on its 
acoustic radiation properties. 

1.  INTRODUCTION 

Under complicated loading conditions, the offshore structures cannot avoid damages. 
Therefore, it is of significance to investigate the properties of dynamic and acoustic radiation of 
the stiffened panels which have been widely used in the field of ship and offshore structures due 
to their high load-carrying capability and light weight. 
Ever since the introduction of modes of damages in the 1950s, damaged structures have been a 
topic of primary interest in the field of offshore research. For example, Banks and Emeric have 
studied the property of frame structure with asymmetric damages and the dynamic equations 
were obtained. The lower vibration modes of the stiffened structure can be easily solved by 
Finite Element Method, but it fails when dealing with the coupled interaction of structure and 
acoustic medium. If the acoustic medium is light fluid, the weak coupled fluid-structure 
problem can be solved via decomposition. In case of heavy fluid, the fluid is strongly coupled 
with the structure and it becomes a daunting task. Although last decade has witnessed intensive 
studies of the strong coupled problems by using FEM/BEM, more work is required for the 
better understanding of the problem. 
In this work, the modes of damages are introduced into the finite element analysis. Isotropic 
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damage modes are modeled by globally and isotropically softening the stiffness. Anisotropic 
damage modes are modeled by using reduction coefficients for elastic damages in x and y 
directions. A shell element model is built to model the healthy and damaged structures and to 
calculate the dynamic characteristics and response of a structure surface. With the linear 
boundary element, the sound pressure of structure radiating outwards can be calculated and the 
radiated power and directivity can then be obtained. The influences of various locations and 
extents of damages on natural frequencies, vibration and acoustic radiation modes, radiation 
power, and directivity pattern are studied. An analysis method has been established to analyze 
acoustic behavior of a damaged structure. The proposed method is useful for assessing the 
influences of the damages present in a stiffened panel on its acoustic radiation properties. 

2.  BASIC THEORIES 

The FEM/BEM have been employed to evaluate the characteristics of dynamic and acoustic 
radiation of a damaged stiffened panel. The damaged structure is solved by FEM while the 
action of the acoustic medium on the damaged panel is analyzed by BEM. With the response of 
the structure surface, the sound pressure of structure radiating can be calculated through the 
Rayleigh’s integral formula. 
In the presence of the acoustic medium coupled to the structure, the dynamics equations of the 
stiffened panel can be expressed in a discrete manner,  

fKwwM =+&&                                                                                                            （1） 

Where M and K are global mass and stiffness matrices, respectively, and w and f the nodal 
displacement vector and acoustic medium coupled vector, respectively. 
The plate in the infinite baffleplate vibrates at the monochromatic frequency of ω . The 
radiation acoustic pressure at point P in the the semi-domain can be obtained by the following 
The Rayleigh’s integral formula using normal vibration velocity ( )tSun ,  of source point S, 

( ) ( ) ( )∫∫=
s

n dsPSGtSujtPP ,,
2

, 0

π
ωρ                                                                （2） 

Where 0ρ is the density of acoustic medium, k wave number, r the distance between source 
point S and point P , ( ) rePSG jkr /, −= , the Green Function. 

2.1 Damaged plate and shell model 

Based on the assumption of Kachanov , the damage of the structure can be modeled by the 
reduction of elastic modulus. By setting ψ  as the ratio of the total damaged areas and the 
cross-sectional area, the reduction coefficient of the elastic modulus in the x-direction can be 
defined as xdxK ψ−= 1 . The elastic modulus in the x- and y-directions can be given as 

xxdxxx EKE ='  and yydyyy EKE =' , respectively. It is worthy noting that the elastic modulus in the 
z-direction is independent of the damages in the other two directions. 
The stress-strain relationship in the anisotropic plate is complicated. With the assumption of 
isotropic damage modes, the stress-strain relationship in the damaged material can be generated. 
Assuming the thickness of the plate is infinitesimal, GGG zxyz == , yxDDD =  and 

yxμμμ = , the stress-strain relationship of the damaged plate can be given on the basis of 
Mindlin assumpation, 

EEK
y

dx

x
x

μσσε −=        
EEK

x

dy

y
y

μσσ
ε −=  



ICSV14 • 9-12 July 2007 • Cairns • Australia 

( )
EK

K

dx

dx
xyxy

μτγ +
=

12
      

G
yz

yz

τ
γ =       

G
zx

zx
τγ =                                                        （3） 

2.2 Fluid added effect 

The investigations of the dynamics structure and acoustic medium coupling problem involve 
two aspects: 1) the characteristics of the acoustic radiation such as the dependence of the sound 
pressure on the vibration of structure, the distribution of the sound pressure and directivity, etc. 
2) the counteraction of the sound filed on the vibration of the structure. 
If the acoustic medium is light fluid, the weak coupled fluid-structure problem can be solved 
via decomposition. In case of heavy fluid, the fluid is strongly coupled with the structure and 
the problem should be solved simultaneously for the behaviors of the dynamic structure and the 
sound field in water. Taking the coupled fluid-plate with a coupling parameter λ  as an example. 
The parameter can be expressed as:  

ωρ
ρλ
h

c0=                                                                                                                    （4） 

Where c is the sound velocity in the medium, ρ and h are density and thickness of the plate, 
respectively, ω  the vibration frequency of the coupled system.  
The magnitude of λ  determines how strongly the system is coupled. If 1<λ , the system is 
coupled weakly while it is strongly coupled if 1>λ . 

2.3 Acoustic radiation mode 

Acoustic radiation mode is the distribution of the acoustic intensity excited by the structural 
vibration. The sound pressure is determined by the vibration modes. Supposed the structure 
vabrates at the r-th mode, the normal vibrational velocity ( )tSunr ,  of a point s at the coupled 
surface can be given by, 

( ) tj
nrrnr

rejtSu ωφω=,                                                                                               （5） 

Substituting Eq. (5) into Eq.(2), the distribution of the sound pressure and the corresponding 
r-th acoustic radiation mode shapes can be obtained as, 
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It is noted that the acoustic radiation mode is the function of the normal velocity of the coupled 
surface. The reduction of the dynamic properties of the damaged structure will definitely lead to 
the change of the acoustic radiation.  

2.4 Acoustic damping 

The acoustic damping will lead to a reduction of the system’s energy. Assuming a rectangular 
plate vibrates at the frequency of ω  and the distribution of the responding velocity at point 
( )yx, of the coupled surface between the plate and fluid medium is in the form of 
( ) ( ) tieyxUtyxu ω,,, = , the radiation energy in the fluid medium per period can be expressed as    

( )yxSucAER ,2 2
0ρω

π
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⎛=                                                                                   （8） 
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Where A and ( )yxS ,  are the area of the plate and the eigenvalue of the vibration, respectively. 
The average velocity of the plate u  can be calculated by, 

( )[ ]∫ ∫=
b a

dxdyyxU
A

u
0 0

22 ,
2
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                                                                               （9） 

The total energy of the plate is given, 
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Based on the theory of vibration dissipation, acoustic damping coefficient can be expressed as, 
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The ( )yxS ,  can either be the i-th vibration mode shape ( )yxi ,ϕ  or the superposition of all the 
vibration modes. Therefore, the acoustic damping coefficients for the resonance or non 
resonance vibration can be furnished, 
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Where iA is the weighting coefficient of each mode. 
In view of the relationship between the acoustic radiation energy and density, the radiation and 
the vibration energy of the plate can be described as, 
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The acoustic damping coefficient can then be expressed as the ratio of the radiation energy, 
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3. NUMERICAL EXAMPLES 

The computer program is developed to investigate the properties of dynamic and acoustic 
radiation of a damaged stiffened panel, in which the structure is investigated using FEM model 
of 4-node shell elements while fluid is modeled by BEM model of 4-node linear elements. The 
influence of damage on stiffed structure on the aspects of acoustic radiation modes, sound 
power, directivity pattern and the damping of acoustic radiation have been explored. 

3.1 Geometrical and physical description of the damaged stiffened panel 

The damaged stiffened panel is simply supported along four sides. It is of 1.2m long in x  
direction, 0.9m wide in y  direction and 5mm thick. The panel is stiffened evenly in x  and y  
directions with the height of 0.1m and thickness of 5mm. Young’s modulus and Poisson’s ratio 
of the material are taken as 211 /1001.2 mN×  and 0.3, respectively. 
Table 1 shows the details of the modulus, the location and the area of the damage. If the damage 
is located within the region of 21 axa ≤≤  and 21 byb ≤≤ , the center of the damage will be 
located at the node of ( )dc, . To facilitate the study, the location, area and modulus of the 
damage are expressed in nondimentional forms. 

 Non-dimensional damage area: ( )( ) abbbaaA /1212 −−=  
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 Non-dimensional damage location: acdx /= ， bddy /=  
 Non-dimensional damage modulus: EEk xx /= , EEk yy /=  

Table 1 Distribution of the damage of the simply supported, damaged stiffened panel  
 damage modulus

k  
damage area 

a  
damage location 
（dx，dy） 

1 
0.3 
0.6 
0.9 

0.083 （0.5,0.5） 

2 0.4 
0.009 
0.083 
0.148 

（0.5,0.5） 

3 0.4 0.083 （0.125,0.5） 
（0.625,0.5） 

3.2 Study of the aberrance of acoustic radiation modes 

Figure 1 shows the influence of the damage modulus on acoustic radiation modes. It can be 
observed that the peak value of the acoustic radiation mode increases obviously with the 
increase of the damage modulus. As the weakening of the damaged part will cause the 
strengthening of the swing, the acoustic radiation mode only changes a little within the domain 
of damage. 
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Fig.1  influence of the damage modulus on acoustic radiation modes 
（damage area a =0.083and damage location（0.5,0.5）） 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1.0

1.2

.0

0.2

0.4

0.6

0.8

 
           (a) healthy                                  (b) a = 0.009                              (c) a = 0.083                        (d) a = 0.148 

Fig.2  influence of damage area on acoustic radiation mode 
（damage modulus k = 0.43 and damage location（0.5,0.5）） 

Figure 2 depicts the influence of damage area on acoustic radiation mode. It can be found out 
that the increase of the damage area will cause the weakening of the stiffness, and lead to the 
increase of the influence on acoustic radiation mode. 
Figure 3 shows the influence of damage location on acoustic radiation mode. It is observed that 
the acoustic radiation modes appear to be local vibration within the area of damage, and the 
location of the peak value of the vibration will move with the moving of the damage area.  
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Figure 3  influence of damage location on vibration mode and acoustic radiation mode 
（damage modulus k = 0.43and damage area a = 0.083） 

3.3 Study of the aberrance of sound power and directivity pattern 

Figure 4 shows the influence on sound power caused by different modulus, area and location of 
the damage, respectively. Figure 5 indicates directivity patterns on 300Hz with altering damage 
modulus. With the increase of damage modulus, it can be found that natural frequency reduces, 
and vibration modes tend to be local vibration near the damage location. The increase of 
damage modulus may cause the increase of model three of nature frequency. Directivity 
direction is found to be maximum at o120  when 6.0=k , while the maximum value appear 
around o0  in other situations. With the increase of damage modulus, shape of the directivity 
pattern is found to be more obtuse and the branch petal becomes smaller. 
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Fig. 4 Sound intensitys with altering modulus, area and location of damage 
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Fig.5  Directivity patterns on 300Hz with altering damage degree 

Figure 6 displays the influence on sound power and directivity pattern caused by the damage 
area. It can be concluded that small damage area cause little influence on natural frequency and 
vibration mode. Order of the sound intensity will increase with the increase of damage area. 
The picture indicates that the direction of the primary maximum of directivity pattern rarely 
changes; the secondary maximum increases and more branch petals appear with the increase of 
damage area. 
Figure 7 shows the influence on sound power and directivity patterns caused by altering 
damage locations. It can be found that the damage location affects much on vibration mode. 
The vibration is found to be stronger within the area of damage, and sound intensity changes a 
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little for different damage locations. Results of directivity pattern show that when the damage 
locates closer to the primary maximum, the direction will approach to o0  and the shape of the 
pattern may be more acute. 
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Fig.6  Directivity patterns on 300Hz with altering damage areas 
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(a) Directivity patterns with damage location in (0.125,0.5)    (b) Directivity patterns with damage location in (0.625,0.5) 

Fig.7  Directivity patterns on 300Hz with altering damage locations 

3.4 Study of the aberrance of acoustic radiation damping 

Figure 8 shows the influence of damage modulus on acoustic radiation damping, in which the 
dashed line denotes the radiation damping of healthy structure and the solid line denotes the 
radiation damping of damaged structure with k = 0.3、k = 0.6 and k = 0.9, respectively. The 
figure indicates that the damage may weaken the structure and reduce the natural frequency of 
the structure. The resulted weak structure will increase the swing of the vibration and enhance 
the acoustic radiation damping.  
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  (a) Damage modulus k = 0.3               (b) Damage modulus k = 0.6            (c) Damage modulus k = 0.9 

Fig.8  Acoustic radiation damping with altering damage degree 

Figure 9 shows the acoustic radiation damping with different damage areas. It indicates that the 
acoustic radiation damping changes a little when the damage area is not very big. With the 
increase of the damage area, the damage may weaken the structure and cause the increase of the 
radiation damping. 
Figure 10 shows the influence of damage location on radiation damping. It can be found that 
even the damage locates near the structure boundaries, radiation damping of the damaged 
structure just becomes a little lower than that of the healthy one. This situation is caused by the 
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local vibration near the structure boundaries. It indicates that the damping location hardly affect 
the radiation damping. When the damage locates near the center of the structure, the radiation 
damping of the damaged structure matches well with that of the healthy one, except the location 
of the peak value changes a little and becomes closer to the ordinate. 
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(a) Damage area a = 0.009                  (b) Damage area a = 0.083                   (c) Damage area a = 0.148 

Fig.9  Acoustic radiation damping with altering damage areas 
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(a) damage location in (0.125,0.5)                        (b) damage location in (0.625,0.5) 

Fig.10  Acoustic radiation damping with altering damage locations 

4. CONCLUSION 

Presented herein are the characteristics of dynamics and acoustic radiation of a damaged 
stiffened panel investigated by the FEM/BEM. The following conclusions are drawn based on 
the numerical analysis: 

 in case of the structure coupled with fluid, the noncompressive fluid model can be used 
with ease for the lower frequency. However, as the frequency increases, compressive 
fluid model should be adopted for more reasonable results, but the computing cost 
increases accordingly 
 the introduction of the added mass of fluid results in an asymmetric mass. In the present 
work, the eigenvalue problems are solved by Lanczos  and QR algorithms 
 with the increase of the damage modulus, the peak value of radiation mode increases. The 
peak points of the radiation power and damping move into the direction of lower 
frequency. Directivity direction is found to be maximum at o120  when 6.0=k  
 with the increase of the damage areas, the peak of radiation mode is very difference. The 
peakvalue of radiation power and damping moves towards low frequency. The main petal 
keeps fixedness but the accidental petal is strong gradually 
 for different damage locations, the  peak of radiation moves greatly. The  radiation power 
and damping is changes a little. But the main petal shows big difference. 


