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Abstract 
 
In this paper, we present a recently developed split region method that solves the time-
dependent acoustic wave equation with greatly increased efficiency. This method uses a 
Chebyshev propagation scheme in areas where there are interfaces and medium variations, 
and a simple free space propagator where the medium is homogenous.  It is proven to be 
highly accurate and effective. It can easily incorporate variations and boundaries in the 
propagation medium to simulate a “real-life” wave passing through air, liquids, and solids.  
 

1. INTRODUCTION 

Previously, Pan and Wang [1,2] developed an explicit acoustic wave propagator (AWP) to 
describe the time-domain evolution of mechanical waves in various media. This method was 
based on a similar scheme that was developed by Tal-Ezer and Kosloff [3,4], who studied 
seismic wave propagation and a variety of gas-phase reactive scattering and related chemical 
processes. The AWP method has been successfully applied to study both the propagation of a 
flexural wave in a thin plate by Peng, Pan, and Sum [5] and an acoustic wave in a room by 
Sun, Wang, and Pan [6]. However, this method requires significant computer resources since 
the AWP propagation scheme utilizes a large set of modified Chebyshev polynomials with 
Bessel functions of the first kind as the expansion coefficients.  
 
In this paper we develop and implement a split region technique that uses the sophisticated 
Chebyshev propagation scheme in areas where there are interfaces and medium variations, but 
a simple and much more efficient free space propagator where the medium is homogenous. 
We then demonstrate the application of this method in one- and two-dimensional 
sound diffraction around a wave trapping barrier and sound propagation in enclosed spaces. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

2 

2. THEORY 

2.1 Acoustic Wave Propagator 

The motion of acoustical waves in air and solids can be described by a partial differential 
equation known as the acoustic wave equation: 
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Integrating this with respect to time gives the formal solution: 
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where r denotes the spatial co-ordinates collectively and t stands for time, with t0 being the 
initial starting time. Φ is a state vector, while Ĥ is the system Hamiltonian that describes the 
physical properties of the propagation and the boundary medium. The acoustic wave 
propagator, or AWP, is defined as: 
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In a two-dimensional space, Φ describes the sound pressure p(x, y, t) and the particle 
velocities vx(x, y, t) and vy(x, y, t) in the x- and y-directions: 
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and Ĥ is of the form: 
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where c is the speed of sound within the medium and ρ is its density. 
 
 

2.2 J-Chebyshev Expansion 

The exponential operator of Eq 3 is impractical in its current form, and cannot be evaluated 
exactly, so it needs to be expanded as a finite polynomial. We shall use a Chebsyhev 
polynomial expansion since it allows for long time-steps and its expansion coefficients decay 
exponentially when the order is sufficiently larger than the argument, both of which 
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contribute to make the scheme faster and more accurate. To ensure the convergence of this 
expansion, the system Hamiltonian Ĥ needs to be normalized as: 
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where 

max
! is the maximum eigenvalue of the system operator Ĥ. In the case of sound 

pressure in a two-dimensional space: 
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If we let max0 )( !ttR "= , then the AWP of Eq 3 can be expressed as: 
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The next step is to make a simple, if somewhat non-intuitive, change of variables. We let 
,' iXX =  then expand the exponential operator in terms of the Chebyshev polynomials 
)'(XT

n
, which gives us: 
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 If we use the orthogonality relationship for the Chebyshev polynomials, the coefficients 
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where 1

0
=c  and 2=

n
c  for n > 0, and )(RJ

n
 is a Bessel function of the first kind. However, 

there are complex numbers involved in this expansion, while the state vector and operator are 
real. Hence, we shall define a new set of modified Chebyshev polynomials, as given by: 
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It can be shown that the modified Chebyshev polynomials satisfy the following recursion 
relation: 
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with 1)(
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1 . It is now possible for us to write the acoustic wave 

propagator, Û , in the form: 
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which only involves real-valued operations. We now obtain our state vector with an expanded 
acoustic wave propagator: 
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As this scheme uses the Bessel functions, )(RJ

n
, as its expansion coefficients, we name this 

method the J-Chebyshev expansion. The benefit of this method is that both the Chebyshev 
polynomials and the Bessel functions are bounded in [-1,1] and decay exponentially with the 
coefficient index n when n > R. These properties are very useful for numerical computation, 
as they allow expansions of the exponential function to be accurately calculated for arbitrarily 
large values of R, that is arbitrarily large time steps. 
 
 

2.3 Free Space Solution 

An exact solution to the propagation of a sound wave through free two-dimensional space is 
available, and is applicable to any situation that is free of medium changes and interfaces. It 
can be shown that the pressure p(x, y, t) and the velocities vx(x, y, t) and vy(x, y, t) that satisfy 
Eq 1 also satisfy the second order wave equation: 
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The solution to the second order wave equation is of the form: 
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where !
yx,

 tc

represents a two-dimensional disc centred at (x, y) with a radius of ct that the 

integral is performed over. 
 
 

2.4 Split Region Implementation 

The Chebyshev expansion is sufficient to perform any calculation that is necessary in 
simulating sound diffraction and propagation. this situation. However, it requires significant 
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computer resources. For a large grid, the computational effort that is required becomes 
prohibitive. On the other hand, the free space solution is much faster, but only applicable in a 
homogenous free space. 
 
Many acoustical problems involve large amounts of free space interspersed with medium 
variations, interfaces, and barriers. It is readily apparent that using both solutions in the 
appropriate regions would be much more efficient. We have developed a split region 
technique that will use the exact solution in regions of free space, and the Chebyshev 
expansion in areas where there are variations. This leads to increased computational 
efficiency and speed. 
 
The splitting technique involves multiplying the total acoustic wave distributions by a step 
function, where the step occurs at the intended boundary between regions. This method 
divides the wave-distribution into two sections that can be propagated separately, by the most 
appropriate technique for each region. Due to the linear nature of the splitting, these two 
sections can be easily recombined by adding the two resulting distributions together. The 
whole process can then be repeated if more than one time step is desired. 
 
Ideally, the splitting function would be a step function. However, the discontinuities that this 
would introduce into the wave distribution would create large inaccuracies in the numerical 
techniques that are to be used. To avoid this consequence, a more gentle splitting function is 
used, where the step function is convolved with a Gaussian curve, so that the splitting actually 
occurs over some width. This eliminates the discontinuities of the pure step function and the 
associated difficulties and errors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A cross-section schematic of the split region technique, with an acoustic 
pulse incident on a barrier with transmission and reflection occurring. Dashed line: 
step-function. Dot-dashed line: smoothed step-function. Dotted line: region 
boundaries. 
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The essence of the split region implementation is the division of the space into homogenous 
and inhomogeneous regions. An example of this can be seen in Figure 1, where an incident 
wave is made to travel to and across an obstruction. The wave starts off in the homogenous 
region on the left at time ti, and will be moved across this region with the free space 
propagator. As the wave approaches the vicinity of the obstacle, the algorithm will then pass 
the wave onto the Chebyshev expansion propagator, which is operating in the central region. 
When the acoustic wave emerges from the central region, the free space propagator can again 
be employed to model its propagation in the homogenous region.  
 
Note that the sizes of the splitting region, the interaction zone, and the time-step need careful 
determination. The buffer zone in the interaction region surrounding the split region needs to 
be large enough that portions of the wave that are at the edge of the split region at the start of 
the time-step do not travel further than the edge of the buffer region, otherwise they are 
artificially wrapped and thus provide inaccurate results. As a general rule, the size of the 
buffer region needs to be greater than the distance travelled by the wave in the length of the 
time-step. 
 
This technique should be useful for any acoustic problem that can be easily divided into 
homogenous and inhomogenous regions, in any number of dimensions, though the algorithms 
for the splitting will become increasingly complex. Figure 2 depicts a simple two-dimensional 
situation (or a cross-section of a three-dimensional one) using square and circular splitting 
regions around a small round obstruction amidst free space: 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 2: A schematic of the split region technique in two-dimensions, with 
square and circular splitting regions shaded, around a small circular 
obstruction. Dashed line: step-function. Dot-dashed line: smoothed step-function. 
Dotted line: region boundaries. 
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3. RESULTS 

In Figure 3, an acoustic wave is propagated towards a small barrier (a) using both a full J-
Chebsyhev propagation (b), and a split region implementation of both free space and J-
Chebshev solutions (c). The absolute difference between the two results is quite small, on the 
order of 10-6 and less. The computational saving is significant especially when the interaction 
region is small in comparison with the entire space under consideration. 
 
The J-Chebyshev scheme and the split region implementation have both proven to be highly 
accurate methods in modelling the propagation of acoustic waves. The split region 
implementation builds on the J-Chebyshev scheme becomes invaluable especially when 
solving acoustical problems in two or three dimensions with various barriers and interfaces, 
where the time and complexity of calculations rises sharply. 
 
As an example, a two-dimensional room with a barrier in the middle of the room can be 
modelled by the scheme to investigate the effects of the barrier.  Figure 4 shows the sound 
diffraction around the barrier at various times after an initial sound pulse emitted at one of the 
corners.   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The propagation of an acoustical wave through a small barrier (central peak, 
~0.1x denser than surrounding free space). (a) The incident wave at time ti. (b) The 
reflected and transmitted waves at time tf, propagated entirely using the J-Chebyshev 
scheme. (c) The reflected and transmitted waves at time tf, propagated using the split 
region implementation, with the smoothed top-hat (scaled to fit) as the splitting 
function. (d) The absolute difference between the results of the full J-Chebyshev and 
split region implementations. 
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(c) (d) 
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Figure 4: Sound pressure distributions at different times in a square room with a 
barrier, initial sound field at the corner (1m, 1m). 

6. CONCLUSIONS 

In this paper, we have presented an efficient and highly accurate time dependent propagation 
scheme for simulating the propagation of one- and two-dimensional acoustic waves. In 
particular, the use of the wave split region technique, which can be readily extnded to higher 
dimensional grids, allows for significant reduction in computation time whilst not 
compromising accuracy. 
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