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Abstract

Modern Parabolic Equation (PE) models are capable of rapid and accurate pre-
dictions of underwater propagation. To achieve this goal they require not only high-
quality environmental data but also properly set model parameters, usually selected
by a skillful practicing modeler. Automated simulation systems cannot rely on user
skills and have to select their parameters through some heuristics. Commonly, the sys-
tem designers choose a cautious approach and use conservative parameter settings,
thus, sacrificing performance for accuracy. This paper examines possible approaches
to simplify parameter selection. The paper is focused on using Nonlocal Boundary
Conditions (NLBCs) to remove the user-defined parameters related to truncating the
computational domain, the so-called “absorbing sponge”. In special cases, this ap-
proach allows additional speed-up of simulations through pre-computation of sound
propagation in horizontally-independent medium layers.

1. INTRODUCTION

Underwater sound propagation can be approximately described by the One-Way Wave
Equation (OWWE) [3], which is a class of PE. For 2D problems with Cartesian coor-
dinates x (range) and z (depth), OWWE is

∂

∂x

[
ρ−1/2Ĝ2Ψ

]
= ik0ρ

−1/2ĜĜ2Ψ . (1)
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Here, Ψ is the complex pressure envelope, k0 = ωc−1
0 is the reference wave number,

c0 is the reference sound speed, ρ is the medium density, ω = 2πf , and f is the sound
frequency. The sources and current-related terms are omitted for brevity. The operators
in Eq. (1) are Ĝ = (1 + X̂)

1/2
− 1, Ĝ2 = (1 + X̂)

1/4
, and

X̂ =
1

k2
0

{
ρ

∂

∂z

[
1

ρ

∂

∂z

]
+ k2 − k2

0

}
, (2)

where k = ωc−1 is the wavenumber and c is the sound speed. The numerical solution
of OWWE [6] is obtained at xn = n∆x by recursively solving the system of equations

Un,l = ρ−1/2
[
1 + wlX̂

]
Θn,l , Un,l+1 = ρ−1/2

[
1 + ẇlX̂

]
Θn,l. (3)

Here, Un,l, l = 0, . . . , L−1, is the energy flux on the lth partial step of the nth complete
step of the PE; Un,0 = Un and Un,L = Un+1. Complex coefficients wl, ẇl appear from
the Padé approximation of the exponent of operator Ĝ [5]; they depend on the range
step ∆x. The quantities Θn,l are called partical pressures and play important role in
calculating the acoustic pressure Ψ as well as in analysis of energy conservation and
reciprocity relationships [6]. Equations (3) are discretized in depth on a uniform grid
zj = j∆z according to Eq. (7[5]).

Unattended PE simulations require automatic choice of the order of Padé approx-
imation L, and range and depth steps ∆x, ∆z. In addition, the computational domain
must be truncated at some j = N in such a way that approximates the radiation condi-
tions for the field in an unbounded medium. Usually, PE models implement the radia-
tion condition by appending an absorbing layer to the medium and setting the field to
zero at the opposite boundary of the layer [4]. This technique results in the increased
computational domain, hence, time, and introduces additional adjustable parameters
such as the attenuation and thickness of the absorber. This paper focuses on remov-
ing the last group of parameters altogether by replacing the artificial absorber with an
appropriate set of Nonlocal Boundary Conditions (NLBCs) [7, 2] at the domain bound-
aries. The NLBC approach is further extended as a general pre-computation technique
for layered media. The manuscript presents theoretical results, deferring numerical ex-
amples to the presentation.

2. EXACT DISCRETE RADIATION NLBCS

The exact discrete NLBCs for OWWE were obtained by Mikhin [5] using Z trans-
formation of the discrete PE in a homogeneous medium. The radiation NLBC at a
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(virtual) interface in a homogeneous medium is given by Eq. (15) of [5]†:

ϑJ+1 = RMR−1ϑJ = T (ζ)ϑJ . (4)

Here, ϑj = (ϑ0
j , . . . , ϑ

L−1
j )

T
, where ϑl

j is a Z transform of the lth partial pressure Θl,n
j

at the depth node j defined according to Eq. (8[5]); M is a diagonal matrix of the wave
numbers µm (12[5]), ζ is the Z-transform variable, and the matrix R has elements

rlm =
l−1∏
j=0

(1 + ẇjsm)

/ l∏
j=0

(1 + wjsm) . (5)

The functions sm(ζ) are the roots of the characteristic polynomial

P(s) = ζ
L−1∏
l=0

(1 + wls)−
L−1∏
l=0

(1 + ẇls) . (6)

The NLBC in the coordinate space is given by the inverse Z transformation of Eq. (4).

3. REFLECTION FROM AN NLBC INTERFACE

Assume there is an NLBC interface between the media one (depth indexes j ≤ J)
and two (depth indexes j > J). Both media are range-independent along the interface.
It is also assumed that they are independent of depth within a small stripe along the
interface, although this condition is strictly required only for the two depth indexes J

and J + 1, one of which is virtual for each of the media. The Z-transformed partial
pressure and energy flux fields in the upper medium are combinations of incoming and
outgoing plane waves given by Eq. (19[5]):

ul
j = ρ−1/2

L−1∑
m=0

(
Bl,+

m µj−J
m + Bl,−

m µJ−j
m

)
, ϑl

j =
L−1∑
m=0

(
Al,+

m µj−J
m + Al,−

m µJ−j
m

)
. (7)

According to Eq. (14[5]), the plane wave amplitudes are related as Al,±
m = rlmB0,±

m .
Assume that these partial pressure vectors are also related by an NLBC ϑJ+1 =

TϑJ . The particular matrix T is irrelevant for now. Then, one can express B0,− =

(B0,−
0 . . . , B0,−

L−1)
T

through B0,+ and T :

B0,− = SB0,+, where S =
[
R−1TR−M−1

]−1[
M −R−1TR

]
. (8)

†From now on the respective formulas of the referenced literature are denoted as (15[5]).
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The matrix S is a reflection matrix expressing the amplitudes of the outgoing waves
through the amplitudes of the incoming waves. Similarly to Eq. (8), one can express
the NLBC matrix T through the reflection matrix S:

T = R
(
M + M−1S

)(
E + S

)−1
R−1. (9)

Note that equations (8) and (9) relate the partial pressures and plane wave amplitudes in
the same medium. If the depth nodes J , J+1 are separated by an interface with density
discontinuity, one must consider several possible NLBC matrices relating the partial
pressure in the upper medium (as above), in two media, and in the lower medium.

Consider now the reflection matrix for the special case when the NLBC is applied
at an interface of two homogeneous media. The partial pressures in the lower medium
j > J are related by the radiation NLBC (4). The matrix R depends only on the PE
coefficients, and therefore, is the same for both media. On the contrary, the eigenvalues
µm depend on the sound speed in the medium, so that there are two matrices M< and
M> for the upper and lower media respectively. The NLBC in the upper medium is
given by Eq. (18[5]) (the notation > and < is reverted in this paper cf. notation in [5]):

ϑJ+1,< = [gT> + E] [T> + gE]−1ϑJ,< = T<ϑJ,< . (10)

Here, g = g(τJ,<, τJ,>) = (τJ,< + τJ,>)/(τJ,< − τJ,>), where τj = 0.5(ρ−1
j+1 + ρ−1

j ),
and E is a unit matrix of size L. Substitution of this expression into Eq. (8) gives

S =
[
D −M−1

<

]−1[
M< −D

]
, where (11)

D ≡ R−1T<R =
(
gM> + E

)(
M> + gE

)−1. (12)

As all the matrices in the right-hand sides of these equations are diagonal, the matrices
D and S are also diagonal. Thus, although the discrete PE has L vertical wavenumbers
for each horizontal wavenumber, these waves do not transform one into another at an
interface of two media.

4. REFLECTION FROM MULTIPLE LAYERS

Consider now a more general problem when the medium is composed of three layers
denoted “1” (j ≤ J), “2” (J < j ≤ K), and “3” (j > K). The layers 2 and 3 are
homogeneous, while the upper layer 1 is range-independent along the boundary. The
amplitudes of plane waves in the three layers are distinguished with an extra subscript
such as Bl,±

m,1 for the first layer. It is also assumed that the phases of the plane waves
in layers 2 and 3 are counted from the interface at j = K, i.e., the power terms in
Eq. (7) have ±(j −K) instead of ±(j − J). Under these assumptions, the amplitudes
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of incoming and outgoing waves in the layer 2 are related as B0,−
2 = S23B

0,+
2 , where

S23 is the reflection matrix on the interface of layers 2 and 3 given by Eq. (11) with
substitution of M3 for M>, M2 for M<, τ3 for τ>, and τ2 for τ<.

The partial pressure fields in the layer 2 near the upper layer boundary are

ϑJ,2 = R
(
M

−(K−J)
2 + MK−J

2 S23

)
B0,+

2 ,

ϑJ+1,2 = R
(
M

−(K−J−1)
2 + MK−J−1

2 S23

)
B0,+

2 , (13)

where B0,−
2 were expressed through B0,+

2 . Excluding B0,+
2 from these equations gives

NLBC for the middle layer ϑJ+1,2 = T2,JϑJ,2 with the matrix

T2,J = R
[
MJ+1−K

2 + MK−J−1
2 S23

][
MJ−K

2 + MK−J
2 S23

]−1
R−1. (14)

The extra index J in T2,J highlights that the matrix is applied at the upper interface
j = J as opposed to the lower interface j = K. Finally, the relationship (10) yields
the Z-transformed NLBC for the upper medium

ϑJ+1,1 = T1ϑJ,1, where T1 =
[
g12T2,J + E

][
T2,J + g12E

]−1, (15)

with g12 = g(τ1, τ2). According to Eq. (8), the reflection matrix at the interface 1–2 is

S12 =
[
R−1T1R−M−1

1

]−1[
M1 −R−1T1R

]
. (16)

The matrix S23 is diagonal. Hence, the NLBC matrix T2,J is factored as RD2R
−1,

where the matrix D2 is also diagonal. Then, the same derivation as in Eq. (12) produces

R−1T1R =
(
g12D2 + E

)(
D2 + g12E

)−1. (17)

The right-hand side of this expression is diagonal, hence, S12 is diagonal as well.
Eq. (17) proves that if the reflection matrix S23 at the lower side of a layer is diagonal,
this property is preserved in the reflection matrix S12 at the upper side of this layer.

By induction, Eqs. (14) and (15) allow calculation of the reflection matrices and
the Z-transformed NLBC matrices at the upper side of an arbitrary composition of
homogeneous liquid layers. Given that the reflection matrices are always diagonal, it
is convenient to perform all computations in terms of reflection matrices and then apply
Eq. (9) to obtain the Z-transformed NLBC at the final interface.

5. NLBC FOR ARBITRARY LAYERED MEDIA

The previous Section 4 presented NLBCs for media consisting of multiple homoge-
neous layers. Although quite general, this description would require a very large num-
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ber of layers to approximate real media with continuous variations of their parameters.
Moreover, such an approximation may give rise to stability problems due to error ac-
cumulation in numerous matrix multiplications. An alternative approach presented in
this section is to derive exact discrete NLBC for media with arbitrary variation of the
sound speed and density.

Assume that the medium is range-independent below the depth level j = J . The
Z-transformed partial pressures in layered media satisfy a system of equations (9[5])

ul = ρ−1/2
[
1 + wlX̂

]
ϑl , ul+1 = ρ−1/2

[
1 + ẇlX̂

]
ϑl . (18)

Discretization of X̂ by Eq. (7[5]) transforms (18) into a system of linear equations

ul
j = wlAjϑ

l
j+1 + (Dj + wlBj) ϑl

j + wlCjϑ
l
j−1 , (19a)

ul+1
j = ẇlAjϑ

l
j+1 + (Dj + ẇlBj) ϑl

j + ẇlCjϑ
l
j−1 , (19b)

for j = 0, . . . , N . The explicit definitions for the arrays Aj , Bj , Cj , and Dj are not
significant for this analysis. The source terms are omitted. Dividing Eq. (19a) by ẇl,
Eq. (19b) by wl, and subtracting the results yields

ul+1
j = ul

j

ẇl

wl

+
(
1− ẇl

wl

)
ϑl

j = u0
jPl + DjPl

l∑
k=0

1

Pk

(
1− ẇl

wl

)
ϑk

j , (20)

where Pl =
∏l

k=0 (ẇk/wk). Using the Z transformation shift rule uL = ζu0 gives

u0
j =

DjPL−1

ζ −PL−1

L−1∑
k=0

1

Pk

(
1− ẇk

wk

)
ϑk

j , ul
j = Pl−1Dj

L−1∑
k=0

νlk

Pk

(
1− ẇk

wk

)
ϑk

j , (21)

where νlk = ζ/(ζ −PL−1) for k < l and νlk = PL−1/(ζ −PL−1) for k ≥ l. Substi-
tuting Eq. (21) in Eq. (19a) results in a system of equations for the partial pressures

wlAjϑ
l
j+1 + (Dj + wlBj) ϑl

j + wlCjϑ
l
j−1 = Pl−1Dj

L−1∑
k=0

νlk

Pk

(
1− ẇk

wk

)
ϑk

j . (22)

The system (22) can be rewritten as Wt = w, where the vector t contains ϑl
j , j > J ,

the right-hand side is w = −CJ+1(w0ϑ
0
J , w1ϑ

1
J , . . . , wL−1ϑ

L−1
J , 0, . . .)

T
, and W is a

band matrix with 2L + 1 non-zero diagonals. The solution of this linear system is a
linear combination of ϑ0

J , . . . , ϑL−1
J . Therefore, the partial pressures at the depth node

J + 1 are also linear combinations of ϑJ , or, in matrix form, ϑJ+1 = TϑJ , which is
the Z-transformed NLBC for the considered problem. The matrix T is calculated by
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solving the derived system L times with the right-hand sides ϑl
J = δlk, k = 0, . . . , L−

1, and populating the columns of T with ϑJ+1 obtained for each of the L solutions.

6. DUAL-SIDE NLBC

NLBCs were first proposed for accelerating PE computations by truncating the com-
putational domain [7, 2]. To achieve this benefit, computation of NLBC coefficients
must be fast compared to direct PE solution. Alternatively, the coefficients may be pre-
computed. Looking at the problem from this aspect it is clear that NLBCs provide a
form of pre-computation. If propagation conditions in some part of the medium are
simple so that a closed-form analytical or semi-analytical solution of the PE is pos-
sible, this solution can be cast in the NLBC form so that this part of the medium is
excluded from future computations. In this interpretation, NLBCs are not limited to
the problems where the environment is simplified at one end of the computational do-
main. This section presents a practical example of such a generalized NLBC for the
simple case of a medium homogeneous between the PE depth nodes J and K. The top
and bottom layers may have arbitrary range and depth dependence.

The Z-transformed partial pressure and energy flux fields are given by Eq. (7). It
is assumed that there are no density jumps at the interfaces. Hence, ϑj,2 ≡ ϑj,1 ≡ ϑj

for j = J, J + 1 (cf. Section 4) and ϑj,2 ≡ ϑj,3 ≡ ϑj for j = K, K + 1. Similarly, cf.
Section 4 the layer sub-index is omitted in the notation for the plane wave amplitudes
and the eigenvalue matrix M in the homogeneous middle layer. Expressing the partial
pressures ϑj at the near-interface depth layers j = J, J +1, K, J +1 through the plane
wave amplitudes B0,±, then excluding the plane wave amplitudes from the obtained
equations and expressing ϑJ+1 and ϑK through ϑK+1 and ϑJ yields

ϑJ+1 = RDfarR
−1ϑK+1 + RDnearR

−1ϑJ ,

ϑK = RDnearR
−1ϑK+1 + RDfarR

−1ϑJ , (23)

with the diagonal matrices Dnear and Dfar defined as

Dnear =
[
MK−J −MJ−K

][
MK−J+1 −MJ−K−1

]−1
,

Dfar =
[
M −M−1

][
MK−J+1 −MJ−K−1

]−1
. (24)

The system of equations (23) gives the Z-transformed NLBC for the considered prob-
lem. After the inverse Z transformation, it represents the partial pressures at the depth
nodes J +1 and K as linear combinations of partial pressures at the nodes J and K +1

at the current and previous PE steps. Using these expressions, one can split the origi-
nal L three-diagonal systems of equations into 2L coupled subsystems for j ≤ J and
j ≥ K + 1. The nodes J + 1 ≤ j ≤ K can be omitted from computations.
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7. SUMMARY

The presented research generalizes the method of NLBCs for arbitrary stratified acous-
tic media behind the NLBC interface. The NLBC approach provides better accuracy
and fewer user-defined parameters as compared to the absorbing “sponge” technique,
facilitating automated computations. Calculation of NLBC coefficients for a reason-
ably complex problem may be comparable in CPU time to the direct solution of the PE
in the medium extended by the stratified layers. The performance improvements of the
NLBC approach are dramatic when the PE solution is repeated multiple times over the
same range-independent part of the medium. Examples include such CPU-heavy tasks
as source localization and ocean acoustic tomography through matched-field process-
ing [1], broadband calculations, and Nx2D simulations over azimuth-independent deep
bottom. In these applications, NLBC approach becomes a generic pre-computation
technique that allows reusing the calculations performed for the range-independent
part of the medium, such as the deep water layer or the bottom. Once understood as a
variant of pre-computation, the NLBC approach is readily extended to new problems.
For example, the dual-side NLBC (23) allows excluding the internal homogeneous
strata from the PE calculations.
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