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Abstract 
 
A symmetric long slender cantilever beam with nonlinearities shows many nonlinear dynamic 
phenomena. One-to-one resonance of the beam is well shown in the nonlinear vibration. 
Among the nonlinear factors of the flexible symmetric cantilever beam, nonlinear inertia term 
and nonlinear spring term are the most important. When base harmonic excitation is applied to 
the beam, planar vibration and nonplanar vibration occur in the beam due to one-to-one 
resonance. When one-to-one resonance occurs, the planar vibration is different from the 
nonlinear one. When one-to-one resonance is developed in the first and the second mode of the 
nonlinear beam, the beam has different amplitudes and phase values. The phase value changes 
according to the excitation frequency. Thus, the phase change and the phase difference between 
the planar vibration and the nonlinear vibration are investigated both theoretically and 
experimentally when the symmetric nonlinear beam shows one-to-one resonance.  

1. INTRODUCTION 

A flexible circular cantilever beam subject to an external force shows a very complex nonlinear 
response due to its nonlinear characteristics. This non-linearity appears in helicopter rotor 
blades, spacecraft antennas, flexible large space structures, and many other systems. When the 
amplitude of the beam becomes large due to forced vibration, such effects as shear deformation, 
warping, rotational inertia, and gravity, which affects dynamic characteristics of a cantilever 
beam, become important, and thus various nonlinear phenomena derives from nonlinear factors. 
In theory, it is almost impossible to derive nonlinear equations of motion that include all the 
beam effects. In the existing literature, a particular effect is introduced that it has a certain form 
of response. In nonlinear vibration, a flexible circular cantilever beam has nonlinear terms of 
inertia, spring, damping, gravity, warping, and so on. When the external excitation force is 
weak, the beam shows a linear motion, but as the force increases, the linear motion transforms 
to a nonlinear motion due to those nonlinear terms in the beam. As a result, the beam shows 
such nonlinear phenomena that appear only in nonlinear systems as superharmonic, 
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subharmonic, super-subharmonic vibration, quasi-periodic phenomenon, jumping, and phase 
change. It is needed to study the cause of those phenomena in the view of dynamics by 
investigating the characteristics of nonlinear terms from the analysis of nonlinear responses. 
Both theoretical and experimental methods are used to investigate a flexible circular cantilever 
beam when the beam shows nonlinear responses for the base harmonic excitation. Both 
theoretical and experimental analyses are conducted for its phase change and phase difference 
[1], [3], [5]. 
 

2.  NONLINERAITIES OF A CANTILEVER BEAM IN ONE-TO-ONE 

RESONANCE 

To investigate the responses of the beam subject to a forced vibration, integro-differential 
equations derived by Crespo da Silva   and Glynn are used. All variables are 
non-dimensionalized with the length of the beam L and the characteristic time 2 /L m Dη . This 
yields the following equations of motion [6].  
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( ) ( )2 2cos sinF t cF+ Ω Ω + Ω Ω  
 

The boundary conditions for the beam are given as the following.  
' ' 0v w v w= = = =   at  0s =                                                          (2a) 

''' ''' '' ''

0v w v w= = = =   at  1s = .                                                       (2b) 
 

In the equations (1a) and (1b), the terms in the first and second square brackets represent the 
torsion and the axial vibration. The second term in the third square bracket represents the 
coupling between the axial vibrations in the y and x directions. The terms in the curly bracket 
are inertia terms, and the terms in the last square bracket represent gravitational term and the 
boundary conditions for the inextensionality.  2 cosF tΩ Ω  includes the excitation force at the 
base and its frequency. All the nonlinear terms are cubic. And if inertia ration 1yβ = , then the 
coupling between the torsion and the axial motion disappear. 
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3. SOLUTIONS OF THE NONLINEAR EQUATIONS OF MOTION 

To analyze the nonlinear equations of motion (1a) and (1b), method of multiple scales is used. 
And for the perturbation analysis of the equations of motion, a small parameter ε is used. The 
approximations in the planar and non-planar directions can be expressed as the following. 
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Where  is a fast scale that has  and natural frequency of 0T t= Ω mnω  and 2

2T tε=  is a slow scale 
characterizing the modulations of amplitudes and phases. And it is assumed that 2c ε µ= , 

3F fε= and 2
01y 2β δ ε δ= + + . By substituting equations (3) and (4) into equations (1a) and (1b), 

the equations are rearranged for ε  [6], [7]. 
 In this paper, we consider the primary parametric excitation of one mode in the x direction such 
as that of the n-th mode. This excites the other mode in the y direction such as the m-th mode 
through a one-to-one internal or parametric resonance. Thus, the former is directly excited and 
the latter is indirectly excited by the parametric resonance. 
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Where cc means complex conjugate.  
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Where Zi is the root of 1 c and three roots of the equation (7) are 1.8751, 4.6941, 
and 7.8548. The eigenfunction  satisfies the following condition. 

os cosh 0z z+ ⋅ =
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We note that 2nω is the linearized natural frequency of the nth mode of vibration in the x 
direction and 1mω is approximately equal to the linearized natural frequency of the m-th mode in 
the y direction. The actual frequency of the latter is 2

01mZ 2
2δ ε δ+ + . The above equations are 

reduced to ordinary differential equations by the Galerkin procedure as the following. 
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Where iα  and iβ  are defined in the reference [6] (Appendix A). To investigate the system 
response subject to an excitation with a frequency such as the natural frequency of the first 
mode, a detuning parameter σ̂  is introduced and 1 2mω nω= is assumed. 

 
2

2 ˆ(1 )nω ε σΩ = +                                                                           (11) 
 

Substituting the equations into (9) and (10), and eliminating the terms that produce secular 
terms, the conditions for the solutions can be obtained as the following. 
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Converting the above equations into polar form, 
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Substituting the above variables into equations (12) and (13) and separating the real parts and 
the imaginary parts, the following equations of modulation can be derived. 
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Where iR  and  are defined in the reference [6] (Appendix B). iE

 

1 2 2 1ˆ ,n Tγ ω σ θ= −  2 2 2ˆn T 2γ ω σ θ= −                                                     (19) 
 

Periodic solutions of the beam represent the fixed points of (15)-(18). Those points correspond 
to 1 2 1 2 0a a γ γ′ ′ ′ ′= = = = . From (19), it follows that 1 2 ˆnθ ω σ′ = and 2 2 ˆnθ ω σ′ = . Algebraic equations for the 
equations (15)-(18) can be solved using a numerical method. The first order approximation of 
the beam response is given by  

 
( ) ( ) ( ) ( )2

1, cosmv s t s a t tε ε γ= Φ Ω − +1 ...                                                (20) 
( ) ( ) ( ) ( )2

2, cosnw s t s a t tε ε γ= Φ Ω − +2 ...                                               (21) 
 

The numerical analysis is performed in MATLAB 7.0 using the approximations (20) and 
(21). In the numerical analysis of the algebraic equations, the nonlinear response is investigated 
in the planar and the non-planar directions, and then the phase analysis is performed. The 
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analysis of the nonlinear response and the phase difference is performed in the second mode of 
the beam. Figure 1 shows frequency responses of the planar and the nonplanar vibrations of the 
beam in the second mode due to one-to-one resonance. In figure 2, the phase change and the 
phase difference are shown for the planar and the nonplanar vibrations of the beam in the 
second mode. When the excitation force is , the phase difference the planar and 
the nonplanar vibrations is 90

3 0.1980F fε= =
0. 

 

 
Figure 1 – Response curves of the second mode for the cantilever beam:  a2=planar response 

amplitudes; a1n, a2n= nonplanar response amplitudes 

 
Figure 2 – Phase change in one to one resonance of the second mode 

4. EXPERIMENT OF NONLINEARITIES 

4.1 Experiment Equipment 

For the experiment, a circular cantilever beam of aluminum alloy was used as a uniform elastic 
material. The dimensions of the beam were: the modulus of elasticity E=72GPa, the coefficient 
of stiffness G=27GPa, Poisson’s ratio 0.3333ν = , mass per unit length of the beam 

, diameter 0.0336 /m Kg= m 5mmφ = , length L=675mm. For the excitation of the beam, base 
harmonic excitation was applied to the fixed part of the base in the form of a sine wave with 
constant amplitude. The jig that held the beam was made of aluminum AL2024 and was 
designed so that it satisfied the boundary conditions of the beam and so that it was subject to 
transverse (in the planar direction) excitation [8]. 

5 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

 

 
Figure 3 – Accelerometer position on the circular cantilever beam 

 

 
Figure 4 – One to one internal resonance of the circular cantilever beam on the second mode 

 
Table 1 Measured natural frequency and damping coefficient of the circular cantilever beam 

 
Mode λ Theory(Hz) Meas.(Hz) Damping 

1 1.8751 7.94 7.63 1.510% 
2 4.6941 49.78 48.25 0.736% 
3 7.8548 139.40 135.13 0.341% 

4.2 Experiment Method  

A flexible beam was fixed to the shaker to satisfy the boundary conditions of the cantilever 
beam. Keeping the voltage applied to the shaker constant, the experiment was performed by 
increasing or decreasing the excitation frequency. When the voltage to the shaker is kept 
constant, the speed component in the harmonic vibration has a constant value regardless of the 
change of excitation frequency. The increase and decrease of excitation frequency were in the 
form of sine sweeping and the rate of change was 0.030Hz/s. The experiment was performed by 
increasing the amplitude of the excitation with the frequency fixed in the second mode of the 
beam. The process of change in the beam from the linear vibration to the nonlinear vibration 
was investigated as the amplitude of the excitation increases. To investigate the phase change in 
the vibration, the phase portrate and the phase difference were analyzed. To investigate the 
response of the beam, each B&K 4374 accelerometer was attached to the beam in the planar 
(-x) and nonplanar (-y) directions. The mass of each accelerometer was about 0.65g, the range 
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of frequency for measurement 1-25KHz, and the level of measurable acceleration 250,000 . 
The accelerometers were attached to the surface of the beam 100mm above the base with strong 
adhesives. 

2/m s

 The signals of the planar and nonplanar vibrations due to one-to-one resonance were 
respectively measured by each accelerometer and transformed to voltage signals in a charge 
amplifier charge amplifier B&K2635. The signals from the amplifier were displayed as 
lissajous figures on an oscilloscope. Using the obtained lissajous figures, the phase change and 
the phase difference were analyzed. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

In the experiment, the planar and nonplanar vibrations due to one-to-one were well observed in 
the second mode of the beam (48.25Hz). It can be seen that the response of the planar motion in 
one-to-one resonance showed the decrease of the amplitude when nonplanar motion occurred 
due to nonlinearities. That is to say, it can be seen that the vibration energy was transferred from 
the planar vibration to the nonplanar vibration (figure 5, figure 6). As a result, it is easy to 
analyze the responses of the planar and nonplanar vibrations in one-to-one resonance and the 
phase. The planar and nonplanar vibrations have different vibrations in the region where they 
occur simultaneously. In figure 7, it can be seen that when the level of excitation is 25m/s2, the 
phase angle between the planar and nonplanar vibrations varies up to 870. 

    
Figure 5 – Frequency response curves for plane and nonplane on the second mode (forward 

direction). 

 
Figure 6 – Frequency response curves for plane and nonplane on the second mode (backward 

direction) 
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Figure 7 – Phase change in phase portrait of the second mode (x-planar, y-nonplanar) 

6. CONCLUSIONS 

The frequency response and the phase difference due to one-to-one resonance which occurs in 
the nonlinear vibration of a flexible circular cantilever beam subject to base harmonic 
excitation were investigated. The integro-differential equations derived by Crespo da Silva and 
Glynn were used. It can be seen that thee are changes in frequency response between planar and 
nonplanar vibrations due to one-to-one resonance in the second mode of the beam and phase 
difference. In the second mode of the beam, the phase difference was shown to be up to 900. For 
the experimental analysis, base harmonic excitation was applied to a flexible circular cantilever 
beam and then the responses of the planar and nonplanar vibrations were investigated. The 
frequency responses show that when the nonlinear vibration occurs due to nonlinearities, the 
amplitude of the planar vibration decreases. That is, the vibration energy of the planar motion is 
transferred to the out-of-plane to cause the nonplnar vibration. In the region where the planar 
and nonplanar vibrations occur simultaneously, the mutual phase difference occurs. It can be 
seen that the phase difference between the planar and nonplanar vibrations is up to 870. 
Therefore it can be seen that there is a phase difference between the planar and nonplanar 
vibrations due to one-to-one resonance. 
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