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Abstract 
This paper presents an analytical formulation for correcting the diffraction associated to the 
second harmonic of an acoustic wave, more compact than that usually used. This new 
formulation, resulting from an approximation of the correction applied to fundamental, makes 
it possible to obtain simple solutions for the second harmonic of the average acoustic 
pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite 
amplitude method. Comparison with other expressions requiring numerical integration, show 
the solutions are precise in the nearfield. 

1. INTRODUCTION 

In acoustic parameters measurements of a medium, it is necessary to take into account the 
diffraction effects of the ultrasonic source to improve the precision of measurements. The 
measurement cells usually used in transmission consist of two circular transducers (one used 
as source and the second as detector). In these situations the detector will translate into 
electric voltage the average acoustic pressure on its reception area. The analytical solutions 
describing this average pressure can be formulated as the sum of two terms, one 
corresponding to the propagation of a plane wave, and the other including the effects of 
diffraction generated by the geometry of the source-detector unit.  
The attenuation α  and velocity c can be obtained in the case of linear acoustics. Different 
authors [1- 4] gave exact and asymptotic expressions of the average pressure received by a 
circular transducer. These expressions permit to establish correction functions of diffraction in 
velocity and attenuation measurements [5, 6].   
On the other hand B/A parameter is measured in the field of nonlinear acoustics. The first 
measurements of B/A parameter by finite amplitude methods rested on an analytical 
expression of the second harmonic by considering the propagation of a plane wave [7-9]. 
Various authors [10, 11] then improved the precision of these methods by including a 
function to correct diffraction effect resulting from the relation established by Ingenito and 
Williams [12] for the average pressure exerted by the second harmonic. However, the 
correction of diffraction obtained is not very practical because it can be evaluated only by 
numerical integration.  
The objective of this paper is to show that one can obtain a simple and precise form by 
simplifying the correction function of diffraction for the fundamental. Then we will give 
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simple expressions of the average pressure exerted by the second harmonic, including 
diffraction and attenuation effects. We will show that the results obtained are equivalent to 
those establish by Coob and validated in measurement systems [10]. But before establishing 
this result it is necessary to present the various corrections of diffraction applicable to 
fundamental from the acoustic pressure.  

2. CORRECTION OF DIFFRACTION FOR THE FUNDAMENTAL  

2.1. Function D1(z) of diffraction correction for the fundamental  

For the nondissipative case  (α1 = 0), Williams [1] gave the exact expression of the 
average velocity potential ( figure 1) :   
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The first term represents the velocity potential in the case of a plane wave, therefore the 
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second part of equation (1) corresponds to diffraction effect on the velocity potential, with 
U0 the source amplitude velocity and k  the wave number. 

The average acoustic pressure applied on the receiver is expressed in the form: 
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Figure 1. Geometrical configuration of the source-detector. 
 

The correction diffraction function D1(z) allows to adapt the theoretical plane wave to a real 
situation. Consequently : 
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 <p10(r,z)>  is the average pressure provided by the fundamental in the case of a plane wave, 
with P0 = ρ0 c0 U0  is the average acoustic pressure (the source). Thus the module of the 
average pressure is given in dissipative medium in the form: 
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The exact expression of  D1 (z)  is obtained with the Williams solution (1) : 
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2.2. Simplifications of the function of correction D1(z)  

For  z > a  Bass [2] gave a very good approximation of the solution (4) which can 

be simplified for  ξ(z) > >  l  in the form: 
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By limiting to the 1st   order the development of [ ]1/2    in the solution (4), Rogers  et al.  
[4] obtained a good approximation in the form:  
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It is valid for all the values of z/a  if (ka) 1/2  >> 1 , and the error take back by this 
simplification compared to the exact solution (4) is lower than 0.4 % for ka = 100  for 
z/a<(ka)1/2, the preceding condition implies   ka2/z > (ka)1/2 >> 1 , and one can reduce the 
expression (6) by using the asymptotic developments of the Bessel functions :  
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where we define  g(z)   as the diffraction function, related to the parameters of source  a   and  
k, and having this property   [ ] 0)( =

∞→
zgLim

ka
  (plane wave case). 

2.3. Comparison of the various expressions of D1 (z) 

Figures 2a and 2b represent the module |D1| of the different expressions. We use for y axis 
two variables  z/a  and s = zλ/a² = 2πz/ka². With the variable s, we can distinguish the 
near field  (s  ≤ 1)  and the far field  (s > 1). Simulations are obtained with a = 1 cm  and  
ka = 125. 
Simplification (6) is confused with the exact solution (4), and the asymptotic expressions 
(7) constitute a good approximations in the near field (fig. 2a). They diverge from the 
exact solution for z/a > 60  (s > 3) (fig. 2b). The relative error (fig. 2c) confirms the range 
of validity z/a < (ka)1/2 (s < 2π/(ka)1/2) for (ka)1/2>> 1 . Thus the relative error is lower 
than 0.7 %. The lower limit being in any event limited in experiments to the appearance of 
standing waves in the measuring cell. 
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(a) 

 (b) 

 (c) 

Figure 2. Functions of diffraction correction . Comparison with the exact solution of Williams (4). 
Figure (c) present the relative error between exact solution (4) and solutions (5) and (7) 
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3. CORRECTION OF DIFFRACTION OF THE 2ND HARMONIC  

3.1. Function of diffraction correction for the second harmonic 

Ingenito and Williams [12] obtain an equation for the second harmonic in the case of 
monochromatic wave in non dissipative medium. We can find in [10] a good approximation 
of this solution which can be used in the dissipative case. 

Average potential  φ2  is given by: 
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with : AB
2

1
1+=β   and α 2 : the second harmonic attenuation,  

p2= -2jροω φ2 ,  and  B/A is the parameter of non-linearity. 

The relation (8) is the reference analytical solution for second harmonic average velocity 
potential in dissipative medium. Ingenito and Williams [12] showed that a good 
approximation consisted in replacing  <φ1²>  by  <φ1>²  in the expression of <φ2> . Thus, 
we can write: 
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with these relations and some arrangements one obtain for the average pressure of the 
second harmonic according to   D1(z) : 
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The function of diffraction of the second harmonic can be given by 
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Thus while considering D2(z) independent of the attenuation, which amount to separating 
the effects of the attenuation and diffraction, we obtain :  
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3.2. Simplifications of   D2(z)    and   <p2(r,z)> 

According to (12) the correction D2(z) is related to D1(z)2  wich can be simplified. Since 
22
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, we can neglect the term g(z)2 for large 

value of ka. Thus the solution (7) and (5) with the following conditions: z/a< (ka)1/2 and 
(ka)1/2>>1, bring to this simplified expression : 
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We can thus take advantage of the simpler expression (13) to calculate a diffraction 
function D2(z). In this case the integral (12) can be evaluated, and it’s give : 
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Finally with (11), we can established a simple expression sufficiently precise able to give 
the average pressure provided by the second harmonic on a receiver with the same 
dimensions of the source:  
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3.3. Comparison of solutions for the average presses |<p2(r,z)>| 

We simulate the expressions of the relative average pressure |<p2(r,z)>|/P0 in two extreme 
mediums in term of attenuation and nonlinear effects: 
Water :  c0=1483 m/s, ρ0=1000 kg/m3,α0=0.25.10-13 Npm-1Hz-2,α2=4.α1, B/A=5.2 
Glycerol : c0=1909 m/s, ρ0=1260 kg/m3,α0=26.10-13 Npm-1Hz-2,α2=4.α1, B/A=9.4 

The conditions, close to the Coob experiments are: f = 3 MHz, a = 1 cm, I0 = 0.5 W/cm² 
for water and   I0 =10 W/cm² for glycerol, with  I0 = P0

2/(2ρ0c0). 

The results are presented on figure 3 and one notes that our solution (15-14) is similar with 
that obtained by Coob [10].  Importance of the diffraction correction D2(z) is visualized by 
the representation of the simple case of a plane wave, i.e. for D2(z) = 1. 
We also simulated the relative average pressure obtained with the reference solution (8) 
and the King integral [13-14] for fundamental φ1. 

Relative errors between the reference solution and the solutions (15-14) and (11-14), are 
presented figure 3 c-d for water and glycerol, where simulations are carried out with a 
tolerance of 10-6  for the calculation of the integrals with the Mathcad software. They show 
that the solution (16-15) is overall more precise than the solutions (11-14) and under the 
conditions adopted for simulation. Moreover, the computing time necessary to the solution 
(16-15) is much weaker than that of the reference solution which include a triple integral. 
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 (a) 

(b) 

 
        (c)  (d) 
Figure 3. Simulations of analytic solutions of the second harmonic average pressure for water (a) and 
glycerol (b) Relative variation between reference solution and solutions (16-15), (11-14) for water (c) 

and glycerol (d). 
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4. CONCLUSION 

We showed in this article that we can obtain a function of diffraction correction for the second 
harmonic much simpler than those usually used. This new formulation is obtained from a 
simplification of the correction applied to the fundamental acoustic pressure. 
We can use this new and simple expression to describe, with a very good precision,  the 
second harmonic pressure detected by a transducer. It’s can be exploited in measurements of 
non-linearity parameter B/A. Another interest of these simple analytical solutions is the 
significant reduction of the computing times when they are used in processes of simulation of 
systems working in the field of nonlinear acoustics. 
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