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Abstract 
 
Noise source separation is a key issue in environmental noise assessment and of particular 
interest in the implementation of the European Environmental Noise Directive (END), since 
the contribution to the overall noise level from each single source should be evaluated 
separately. This, because concerning noise reduction measures each noise source should be 
eventually reduced independently from the other sources and the effect of the single noise 
source reduction should be readily compared to the corresponding noise of other sources, and 
to the health benefits. A technique which is based on wavelet analyses was tested to evaluate 
how far these concepts could be developed to effectively assist reaching these objectives.  
This technique is applied here and evaluated using noise long-term measurement data of 
campaigns performed in Italy in the context of the HARMONOISE and IMAGINE projects 
funded by the European Commission. Moreover, a proposal is made for using the same 
techniques to assess the physiological human response to specific noise sources. A metric is 
introduced which considers each single event in relation to the environment where this 
happens and to the subjective feeling that this might evoke in the person. 
 Brief time periods of the noise recordings obtained during the experimental campaigns 
in a real urban environment were used to test the technique. Subsequently, an attempt was 
done to separate the noise of the cars, motorbikes, buses, airplanes, trains and that produced 
by the local human voices. Characteristics of the sound signal will be shown, which are used 
to discern a specific sound source signal from another; these could be used in the future as 
alternative noise indicators. 

1. INTRODUCTION 

Increasing annoyance due to noise sources in Europe has prompted the Environmental 
Noise Directive (EU regulation, 2002/49/EC) which requires that all major environmental 
noise sources within urban environments be mapped. This is a challenge for both the noise 
mapping software developers and for noise measurements in urban environments. The first 
has to tackle the difficulty of complex reflections and propagation, and the correct modelling 
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of the noise sources, the second, have to guarantee the precision of their measurements even 
in complex situation with mixtures of road, railway, aircraft, industrial and other local noise 
sources. The measurement campaign undertaken within the European IMAGINE project 
showed how difficult it could be to get reliable values for several simultaneous noise sources, 
which may occur at very low levels in urban environment such as 50 dB or 55 dB LDEN (Level 
day-evening-night as defined by EU regulation). Therefore, it was seen as necessary to supply 
measurement teams with software that is able to maximise information relative to different 
sources occurring in mixtures.  

More research on human health assessment is a basic need for the protection of the 
European citizens’ health, and so for the Institute for Health and Consumer Protection of the 
European Commission as well. Environmental noise measurements in urban environments 
require that the specific sources under assessment are separated from other, simultaneously 
occurring sources such as cars, scooters, motorbikes, air conditioning systems, people talking, 
birds, cars standing under the microphone, etc.  

This paper then explores the possibility of developing a noise monitoring system that 
evaluates a metric for annoyance based on the acoustic signal and a set of parameters that 
relate the human response to that signal in terms of annoyance. Such a noise monitoring 
system will require many new features, which could both be used for noise separation and for 
assessment of the psycho-acoustic properties and health effect, like it is foreseen if better 
epidemiological studies are to be conducted [1],[2]. Firstly, the signal will need to be 
segmented into sound classes based on source types, as listeners will have a different 
psychological response to each sound source based on their social relationships to the source. 
This segmentation will also allow the computation of a range of psycho-acoustic properties 
associated with each specific sound source and the prevalence of each sound source over time 
to be determined. 

It is proposed that annoyance may be modelled as the level of distraction caused by 
sound sources and the level of acceptance individuals have for each source. The level of 
distraction caused by a sound event will also depend on the type of cognitive activity that the 
individual is undertaking at the time. Distraction may be related to annoyance and to stress on 
the individual by considering the added cognitive load associated with cognitively evaluating 
each event. Changes in the subject’s environment cause reflexive shifts in attention to identify 
the source associated with that change and in the first instance decide on whether it represents 
a threat or an opportunity. This reflex is activated when changes in the acoustic environment 
exceed that to which the subject has become habituated. Therefore the first factor we can 
associate with annoyance is the number of time per minute sound events other than the 
‘background’ occur. Approaches to defining background sound will be explored in the theory 
section. 

Some events will cause stronger arousal if an emotional relationship with the source has 
been previously established. The most obvious example is if the source represents a danger to 
the subject, but the valence and strength of the emotion will generally depend on a wide 
variety of factors. A statistical spread of acceptance in any population can be determined by a 
questionnaire on the strength of approval or disapproval of a range of common sources across 
a population in a similar fashion to noise annoyance surveys. However the proposed metric 
would use this information in relation to a specific recording rather than relying on the long 
term memory of subjects to recall their annoyance with respect to given sources over large 
lengths of time. 
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2. THEORY AND METHOD 

2.1 Sound classification 

A short description of the classification algorithm, Cyber Ear©, follows and more 
details can be found in earlier papers [3]. Wavelet filter banks are used as they have many 
features in common with the multi-resolution frequency-time filtering of the human middle 
ear [4]. They also have the advantage over Fast Fourier Transforms of high frequency 
resolution at low frequencies and high temporal resolution at higher frequencies [5]. In 
keeping with the findings of Gygi et al. [6], the feature vectors used for classification were the 
RMS amplitude and variance of short frames of wavelet coefficients over 12 decomposition 
levels.  

Supervised back-propagation neural networks with three layers were used for feature 
classification. The output layer had 1 node for every 2 signal classes, the input layer had 24 
nodes, one each for the mean and variance of all 12 wavelet decomposition levels, and the 
hidden layer had 12 nodes. Thresholds were applied to the NN outputs such that outputs 
within the range of the threshold from a binary output were classified as belonging to a known 
sound class, and all other outputs were classified as unknown. These thresholds could be 
varied depending on the conditions of use and their values may be based on prior knowledge 
of the signals, and the number of classes (generally the more classes, the greater the 
threshold). The value of the threshold also determines the rate of false negatives and false 
positives. Selection of the threshold value may also be done iteratively, which is not a very 
difficult task as there are only few options between 0.5 and 1. 

Example recordings are concatenated and used to develop a training file for each sound 
class. The recordings of training and test files are time framed for analysis and the length of 
frame is user defined. Preliminary experiments suggested a use of 0.1 to 1 second windows. 
After training, a computer file with the weights and biases of the NN is saved for later use in 
classifying a test file. 

2.2 Choice of classification features 

As computational power increases finer filter channel resolution and the inclusion of 
features such as direction, pitch strength and height and envelope shape are likely to further 
extend the capability of the classification algorithm in real-time monitoring. However the 
choice of features needs to be considered carefully so as not to overload the NN with noisy 
data. For example in some applications sounds occurring over a range of relatively close 
distances to the recording location will need to be classified. These range differences may 
cause signal amplitudes to vary by up to 20 dB with very little change in the signal spectrum 
due to atmospheric absorption. This amplitude variation will cause large discrepancies in the 
RMS amplitude feature vectors between the training and test files unless the signals are first 
normalized. Therefore the user should decide whether the distance of the source is likely to 
vary at close ranges to the microphone and use normalization accordingly. Table 1 presents a 
number of features that could be used for sound classification and the conditions under which 
they may be useful or not. It appears likely that humans are able to learn which features are 
constant and so specific for various sounds that they learn to recognise. 
 

Table 1. Classification Features 
Feature Likely to be useful  Not likely to be useful 
Absolute RMS 
amplitude 

Road traffic passing close to 
a fixed recording location 

Mobile phone rings in 
street 
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Direction Industrial noise source Mobile phone rings in 
street 

Pitch strength Human voice amongst other 
sources 

Musical instrument 
classification 

Pitch height Particular alarm (fixed pitch) Human voice or music 
Envelope shape Animal calls Traffic monitoring 
Spectral shape Emotional arousal in speech Speaker recognition 

2.3 Background sound characterization 

There are a number of issues raised by the use of the classification algorithm in 
environmental noise monitoring. Firstly the algorithm will need to perform with similar (or 
better) sensitivity and specificity as the human ear. While this may seem ambitious, the results 
presented here and in previous papers show that for a limited set of up to about 8 sounds the 
present algorithm is already able to do this. Accuracy rates of 95% have been achieved for 
both road traffic classification and broader environmental sound classification trials in real-
time monitoring.  

A second important issue for the present method of sound classification is the 
characterization of background sound. Sound classification performance was found to 
improve when undertaken with respect to the sound that is continuously present at relatively 
constant levels on the site at the time of recording. This sound could be added to other 
training sound files that were initially recorded in quiet conditions. If background sound was 
then included as a sound class in training the system, the NN specifically responded to 
differences in features due to target sound alone (since background is always present).  

Transient sources were segmented from the recordings used for the background training 
file as far as possible. These sounds may comprise a new target sound class if they occur 
often, or they may be simply ignored. The NN is likely to give an ‘unknown’ response for 
transient sounds that it has not been trained for. It is therefore crucial to develop automated 
algorithms to segment examples of background sound and to use them to update the NN 
during monitoring.  

A simple model was created in Matlab using well-established empirical data from the 
literature [7] to better understand the acoustic properties of background sounds when they 
arise from many uncorrelated sources. Outdoor sound intensity is expected to decay at 3 dB 
with every doubling of distance to a sound source. Depending on sound attenuation factors 
such as humidity and vegetation, and the density and amplitude envelopes of sources, at a 
certain distance from the recording location they should overlap to create a reasonably 
constant sound that we define as the background. Figure 1 approximates how constant, white 
noise sources evenly distributed about a recording location sum over distance to produce 
background sound levels under different vegetation densities at 60% humidity. In this model, 
sources at distances greater than 500 metres make no contribution to the background with 
heavy vegetation, whereas with light vegetation lower frequencies continue to contribute for 
more than 2 km. The summation over time of intermittent 1-second sources the same as those 
used in Figure 1 for light vegetation showed the background sound tended towards constant 
amplitudes (a range of only 0.3 dB) within a 1 km range. An instance of the same source 
located as close as 32 meters to the recording location would produce amplitudes of only 50 
dB, 10 dB below the average background level, and therefore would not be discernable from 
the background variation by amplitude alone. 

Background sound may also be characterized from a psychological perspective. 
Habituation is a well-known phenomenon in both vision and auditory research that results in a 
loss of arousal as the subject becomes more familiar with a particular stimulus or a set of 
stimuli that comprise their environment. It is a form of learning that happens autonomously 
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over a relatively short time. At a neurological level, habituation has been shown to occur in 
neurones in a range of brain nuclei in the auditory brain stem and even in the auditory nerve. 
Habituation in this context is a loss of sensitivity to repetitive stimuli both as a natural product 
of neural mechanics and as a result of active inhibition [8]. Background sound may then be 
characterised as that sound that is constant in absolute spectral levels, variability and 
periodicity. Sound events that are not within the usual variance from mean spectral levels 
cause reflexive attention and arousal. If this occurs too often then repeated arousal can lead to 
chronic stress [9].  

 

2.4 Prevalence and annoyance 

We have described a sound classification algorithm that is able to recognise the 
presence of examples of a dictionary of sounds in real world recordings similar to many noise 
monitoring situations. This paper now focuses on how such algorithms might form the basis 
of a new paradigm in noise monitoring. A paradigm in which a metric for annoyance is 
calculated for a particular acoustic environment, for an idealized listener undertaking a 
particular type of activity. 

Results are presented showing how a classifier is able to report the time over which each 
sound class is likely to be audible for a given recording. This is used to calculate the 
prevalence of each sound class over a given time period. However, simply counting the 
number of events, or the total time that a particular sound class was present, does not model 
the number of times that a listener’s attention was drawn to this sound class. For example a 
series of short rapid knocks should count as just one event and a long sound should not 
always be given more weight than one short sound. Therefore an “attentional” time window is 
applied to the classifier output such that 1 event is recorded if any number of events occurred 
in that window for each sound class. Events that are longer than the 5-second window will 
therefore be recorded more than once. The correct length and shape of the window for a given 
listener’s activity will require further research, but for the present experiments an approximate 
length of human ‘echoic’ working memory of 5 seconds is used.  

The number of recorded events for each sound class is then divided by the total 
recording time to determine the prevalence. The prevalence of each sound class can then be 
weighted by the mean RMS amplitude of the signal above the RMS of the background (1). 
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Figure 1. An approximation of the 
summation of white noise sources 
(amplitude = 65 dB when measured at 
1m) when evenly distributed 100m apart 
up to a radius of 2km in 5 octave bands 
with the centre frequencies as shown. 
Solid lines=light vegetation and broken 
lines=heavy vegetation. Dotted line = 
number of sources within each radius.  
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where P(i) is the prevalence of class i, N(i) is the number of positive classifications of class i, 
T is total time of recording, ai is the amplitude of the noise event of class i, and ab is the 
amplitude of the background. 

Having determined the prevalence of each sound class the annoyance metric can be 
calculated by weighting the measured prevalence by predetermined factors describing the 
social, attentional and psycho-acoustic impact of sounds of this class. The calculation of these 
factors is beyond the scope of the present paper and will be the subject of future research. 
Likely approaches to calculating the psycho-acoustic factor include a combination of psycho-
acoustic metrics such as roughness and sharpness.  

Social factors which capture the subjects’ relationship to the control of these sources 
could be determined from noise annoyance surveys for extensively studied sound classes such 
as aircraft and road and rail transport noise. Finally, attentional factors that capture the 
listener’s mental activity will need to be included in the model. Penalties applied to long-term 
sound levels for measurements made at night attempt to capture listeners’ increased 
sensitivity to noise whilst preparing for sleep (presumably rather than whilst actually 
sleeping). This increased sensitivity may also be due to lower noise floors at night leading to a 
greater impact on overall levels for any given source and more chance of it causing an 
attentional reflex. More detailed research on habituation to noise during a range of cognitive 
activities will enable better modelling of the prevalence of noise attentional reflexes and their 
cognitive loads. For the present experiments these three factors are varied over a small range 
to explore the sensitivity of the annoyance metric to them. 

3. RESULTS 

Figure 2 shows the successful classification of just 4 minutes of a sound recording made 
in the Italian city of Pisa. It should be stressed that this example is taken in the worst possible 
situation, when several sources contribute to the noise with overall levels which do not differ 
more than 3-5 dB. Examples of each sound class were manually concatenated into 45 second 
training files from examples of target sounds recorded at other times (apart from plane and 
dog where there was only one example of each). The ventilator was constantly on during the 
recording. A combination of this sound and traffic on a major road (200m away) comprised 
for most of the time the background sound. Examples of cars were vehicles passing on a 
closer road (50m away) that were distinguishable aurally from the background.  Apart from 
cars the target sounds were generally easily distinguished from the background aurally. The 
plane was a commercial jet airliner. 

Figure 3A compares the calculated loudness of each sound class relative to the 
background sound with the effect of multiplying this vector by the psycho-acoustic and 
acceptance weighting factors. Row 1 of Table 2 gives the values chosen for these factors for 
each of the sound classes. Note that peaks for cars are not seen in Figure 3 because the RMS 
values were very similar to that of the background. Only small changes in the heights of the 
peaks relative to other classes are observed when the weighting factors are applied apart from 
the class of dog barking, which is assumed to be quite sharp and tonal and to have a higher 
non-acceptance value. Figure 3B shows the final values of the annoyance metric computed by 
multiplying strength by prevalence over a 60-second moving integration window. The plane 
and talking classes are now the highest annoyance due to their higher maximum prevalence 
values (7 and 3 respectively). Figure 3B also shows that the changes in the assumed weighting 
factors for cars and talking according to Table 2 had very small effects on the annoyance 
metric compared to that of prevalence. 
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.  
Figure 2. Classification results for an example sound recording. Each star represents a positive 
classification in a 1 second frame. 

A        B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3A. Calculation of approximate loudness of each sound class relative to background (solid 
line) compared to strength (dashed line), in which loudness has been multiplied by psycho-acoustic 
and non-acceptance weighting factors. B. Annoyance for each sound class calculated by multiplying 
strength by prevalence (the number of 5 sec. frames containing events per minute). Two trials of the 
weighting factors shown in Table 2 are compared; black lines are Trial 1 and grey are Trial 2. 
 

Table 2. Assumed weighting factors of psycho-acoustic qualities and non-acceptance. 
 Factors Mbike Bus Car Dog Plane Talk 

Psycho-acoustic 0.6 0.6 0.2 0.8 0.6 0.7 Trial 1 
Non-acceptance 0.7 0.5 0.4 0.8 0.8 0.8 
Psycho-acoustic 0.6 0.6 0.6 0.8 0.8 0.4 Trial 2 
Non-acceptance 0.7 0.5 0.6 0.8 0.8 0.4 

4. CONCLUSION 

A hypothetical metric for the direct measurement of annoyance was proposed in this 
paper. The first problem in developing this metric, the ability to automatically and rapidly 
segment a sound recording into a library of sound classes has been shown to be largely 
achievable. However, there remain a number of other challenges to fully develop this metric 
as outlined below. 

The background sound needs to be defined in terms of human habituation to the 
acoustic environment. Neurological models of the human auditory system are rapidly 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

developing and models of auditory habituation currently exist. It is likely to be possible in the 
near future to use these models populated by experiment data to model human habituation to 
natural acoustic environments and therefore calculate the background in a sound recording. 
This may not be possible in loud, dynamic environments, but it is not likely to be a concern 
under these conditions. 

In the current model psycho-acoustic features such as tonality, roughness and sharpness 
are suggested to be important weighting factors for annoyance as they have been used in 
various noise monitoring paradigms. However it is possible that these features add to the 
annoyance of a sound because they increase the human ability to discriminate these sounds 
from background, and so in the present model they increase the prevalence of each sound 
source. This can be tested in future studies by correlating these factors with prevalence. The 
annoyance metric is also directly proportional to loudness above the background. This may 
only hold in environments where the background is not at such high levels that it acoustically 
interferes with activities such as speech. The proposed annoyance metric was most sensitive 
to prevalence as this could vary between 0 and 12, whereas the other weighting factors could 
only vary between 0 and 1. This is not unreasonable as the frequency of disturbance by any 
source should be the principle factor in annoyance. However, the correct ratio of importance 
between factors contributing to the metric will need to be properly determined by 
experimental studies. One of the strengths of the proposed annoyance metric is that the non-
acceptance factors for a range of sources can be determined for a given population in one 
short questionnaire, allowing annoyance to be then directly measured from recordings in the 
environment over extended periods of time. This procedure, while performing environmental 
noise assessment studies in the future, might help better qualifying specific environments and 
performing more sophisticated epidemiological studies, but more precise as well. Having a 
better understanding of the noise contribution is a help in epidemiological studies, where 
several confounders are already present (e.g.: social status, air quality). 
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