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Abstract 
 
Wave motion in thin, uniform, curved beams with constant curvature is considered. The beams 
are assumed to undergo only in-plane motion, which is described by the sixth-order coupled 
differential equations based on Flügge’s theory. In the wave domain the motion is associated 
with the three independent wave modes. A systematic wave approach based on reflection, 
transmission and propagation of waves is presented for the analysis of structures containing 
curved beam elements. Displacement, internal force and propagation matrices are derived. 
These enable transformations to be made between the physical and wave domains and provide 
the foundation for systematic application of the wave approach to the analysis of waveguide 
structures with curved beam elements. The energy flow associated with waves in the curved 
beam is also discussed. It is seen that energy can be transported independently by the 
propagating waves and also by the interaction of a pair of positive and negative going wave 
components which are non-propagating, i.e. their wavenumbers are imaginary or complex. A 
further transformation can be made to power waves, which can transport energy independently.  

1. INTRODUCTION 

Curved beams are used widely in built-up structures and hence their dynamic behaviour is of 
interest.  Previous work in this area has been summarised in several articles, for example [1-3]. 
Wu and Lundberg [4] have investigated the transmission of energy through a curved section 
connecting two straight beams. They presented numerical results in the form of polar radiation 
diagrams for beams with different curvatures. Walsh and White [5] considered the energy flow 
associated with a single propagating wave component in a curved beam based on four different 
theories – Love’s theory, Flügge’s theory and the corrections for rotary inertia and shear 
deformation. They derived expressions which relate the power to the extensional, bending and 
shear waves. Kang et al. [6] applied the wave approach based on the reflection, transmission 
and propagation of waves to obtain the natural frequencies of finite curved beams.  

The main aim of this paper is to describe a systematic wave approach based on reflection, 
transmission and propagation of waves and to use this to determine the energy flow 
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characteristics of waves in a thin, curved beam. The approach is also valid when rotary inertia, 
shear deformation and damping are important, but these effects are neglected here. Attention is 
focused on in-plane motion and Flügge’s theory is used. The motion is described in terms of six 
independent (or uncoupled) wave components.  

In section 2, the dispersion relation and the ratio of tangential displacement to radial 
displacement for the six wave components are obtained. In section 3 displacement, internal 
force and propagation matrices are derived. These enable transformations to be made between 
the physical and wave domains and provide the foundation for systematic application of the 
wave approach [7] to waveguide structures with curved elements. In section 4, the energy flow 
associated with the wave components is obtained in a systematic way. Their contributions are 
classified according to different conditions for the wavenumbers. The energy flow paths at a 
given frequency are identified. Energy can be transported independently by propagating waves 
or by pairs of wave components with imaginary or complex wavenumbers. A further 
transformation is found to power wave components – these propagate energy independently 
through the curved beam.  

2.  IN-PLANE WAVE MOTION IN CURVED BEAMS 

Consider the in-plane motion of a thin, uniform, curved beam with constant curvature. 
Neglecting the effects of shear deformation and rotary inertia, the governing equations for free 
vibration in the radial and tangential directions are given by [5] 
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where E is the Young’s modulus, I the second moment of area, A the cross-sectional area, ρ  
the density, s  the circumferential coordinate along the centerline, t time, and w  and u  the 
displacements of the centerline in the radial and tangential directions respectively. The rotation 
ϕ  of the cross-section and the normal force N, bending moment M, and shear force Q are given 
by [5] 
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Equations (1) and (2) are based on Flügge’s theory. When R  tends to infinity, the radial and 
tangential displacements decouple and the equations become those for a uniform, straight 
beam. 

2.1 Dispersion relations 

The radial and tangential displacements satisfying equation (1) are assumed to be time 
harmonic and of the form 
  
 i( )( , ) t ks

ww s t C e ω −= ,          i( )( , ) t ks
uu s t C e ω −=  (3a,b) 
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where wC  and uC  are constants, ω  the angular frequency and k  the wavenumber for the 
curved beam. Substituting equations (3a,b) into equation (1) gives  
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Setting the determinant of the matrix in equation (4) to zero gives the dispersion equation 
 
 ( ) ( ) ( )6 2 2 4 4 4 2 2 2 4 2 2 4 2 42 2 0L B L L B L Bk k k k k k k k k kκ κ κ κ κ− + + − + − + − =  (5) 
 
where 2

Lk Eρω=  and 24
Bk A EIρ ω=  are the longitudinal and bending wavenumbers for a 

straight beam, respectively, and 1 Rκ =  is the curvature. The beam is assumed to be undamped 
so that Lk  and Bk  are real. Equation (5) is a cubic equation in 2k  so that there are three pairs of 
solutions at any given frequency, three for positive-going waves and three for negative-going 
waves. The wavenumbers of positive-going waves are defined to be such that  
 
 { }Im 0k ≤ ,          { }Re 0k ω∂ ∂ >  if { }Im 0k =    (6a,b) 
 
Equation (6a) indicates that, if the imaginary value of the wavenumber of a positive-going wave 
is non-zero, the amplitude of the wave decays in the positive s direction. If the imaginary value 
is zero, equation (6b) indicates that the energy transport velocity associated with a 
positive-going wave should be positive.  

The non-dimensional radius of gyration, wavenumber and frequency are introduced and 
are respectively given by  
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where Lc E ρ=  is the longitudinal phase velocity. Figure 1 shows the wavenumbers 1ξ , 2ξ  
and 3ξ  for the positive-going waves in the curved beam with 2 1 1200χ =  which corresponds to 

0.1h R =  if the beam is rectangular. In the figure the frequency range is divided into 4 regions  
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Figure 1. Dispersion relations for positive-going waves in the curved beam with 2 1 1200χ = . 
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by the bifurcation points. In region I, the wavenumbers are all purely real so that all the wave 
modes propagate along the curved beam. One interesting feature is that the (real) wavenumber 

2ξ  for the second mode is negative in this region. Thus the phase velocity of the wave mode is 
negative while the energy is transported in the positive s direction, i.e. a wave transports energy 
in the direction opposite to the direction of the phase velocity. In region II, 2ξ  is complex and, 
since ( )2 3ξ ξ ∗= − , this represents a spatially decaying standing wave. Only the first mode can 
propagate. In region III, also, only the first mode propagates. The other wave modes are both 
evanescent, i.e., they decay without a change in phase. In region IV, 3ξ  becomes purely real, 
representing a propagating wave. In this region the wavenumbers are broadly analogous to 
those of bending ( )1 2,ξ ξ and extensional waves ( )3ξ  in a straight beam. 

2.2 Displacement ratio 

The radial and tangential displacements of the curved beam are not independent of each other. 
From equation (4), the ratio u wC Cα =  is given by  
 
 

22

i i
i

L i

k
k k
κα =
−

;       1, 2, , 6i = …  (8) 

 
where 1, 2, 3i =  denote the three positive-going waves, respectively, and 4, 5, 6i =  denote the 
corresponding negative-going waves. Note that 4,5,6 1,2,3α α= −  since 4,5,6 1,2,3k k= − .   

Figure 2 shows the displacement ratio for the three positive-going waves for the curved 
beam with 2 1 1200χ = . The four regions shown in Figure 1 are not marked for clarity, but can 
be inferred from the discontinuous behaviour of the curves. It can be seen that the radial motion 
is dominant for the first wave mode since 1 1α <  in the frequency range considered. In region II 

2 3α α= . In regions III and IV, the radial motion is dominant for the second mode. Near the 
ring frequency 1Ω = , the radial motion is dominant for the third mode (the magnitude of 3α  is 
zero at the ring frequency) but, as frequency increases, the tangential motion becomes dominant. 
The phase difference between the displacement components is between 2π  and 2π− . 
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Figure 2. Displacement ratio u wC Cα =  for the curved beam with 2 1 1200χ = . 
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3. MATRIX REPRESENTATION OF WAVE MOTION 

A systematic methodology for wave analysis based on reflection, transmission and propagation 
of waves is provided by the definition of displacement, internal force and propagation matrices 
[7]. In this section, the matrices for the curved beam are presented. Since the curved beam is a 
three-mode system, the relevant vectors and matrices are of order 3 1×  and 3 3× , respectively.  

Assuming the displacements to be of the form given by equation (3), the radial and 
tangential displacements of the beam are given respectively by  

 

           ( ) ( )3 5 61 2 4

3 5 61 2 4

1 1i i ii i i
1 2 3 3 4 5 6 6

i i ii i i
1 1 2 2 3 4 4 5 5 6

( ) ,

( )

k s k s k sk s k s k s

k s k s k sk s k s k s

w s C e C e C e C e C e C e

u s C e C e C e C e C e C e

α α

α α α α

− −− − −− − −

− − −− − −

= + + + + +

= + + + + +
 (9a,b) 

 
The generalized displacements and corresponding internal forces can be grouped in the vectors  
 
 [ ]Tw uϕ=w ,           [ ]TQ M N=f  (10a,b) 
 
where the superscript T denotes the transpose. Note that the rotation ϕ  and internal forces Q, M 
and N are obtained from equations (2) and (9). The wave vectors consisting of the amplitudes of 
the waves are defined by  
 

31 2 ii i
1 2 3( )

Tk sk s k ss C e C e C e−− −+ ⎡ ⎤= ⎣ ⎦a ,         5 64 i ii
4 5 6( )
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The displacement and internal force vectors are related to the vectors of wave amplitudes by [7] 
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where the matrices Ψ  and Φ  define the transformation from the wave domain to the physical 
domain. They are given by 
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where the column vectors iψ  and iφ  for 1, 2, 4, 5i =  are  
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and iψ  and iφ  for 3, 6i =  are 
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Using these matrices, the reflection and transmission matrices for arbitrary discontinuities or 
for boundaries can be found in a simple manner [7].  

The propagation matrix F , describing propagation of waves over a distance L along the 
curved beam, is given by 

 

 ( )

1

2

3

i

i

i

0 0

0 0

0 0

k L

k L

k L

e

L e

e

−
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Note that the propagation matrix is diagonal (i.e. the waves are not coupled during propagation) 
and the diagonal elements are independent of position. 

4. ENERGY FLOW IN CURVED BEAMS 

The time-averaged power Π  associated with waves in one-dimensional structures can be 
expressed as [7] 
 
 1

2
HΠ = a P a  (17) 

 

where the superscript H denotes the Hermitian, ( ) ( )
TT T+ −⎡ ⎤= ⎢ ⎥⎣ ⎦

a a a  and the power matrix P  is 
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Substituting equation (13) into equation (18) gives the power matrix P  for the curved beam. In 
the four frequency regions the power matrix is given, respectively, by  
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where the elements are 
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It can be noticed that an element of P  is non-zero, i.e., energy can be transported, in three 
cases: by a single wave with real wavenumber (i.e., a propagating wave); by interaction of two 
opposite-going waves of one mode, for which the wavenumber is purely imaginary (i.e., two 
opposite-going nearfield waves); or by interaction of two opposite-going waves from different 
modes, for which the wavenumbers are a complex conjugate pair. These results are consistent 
with the work by Langley [8] for a general one-dimensional dynamic system. 

Figure 3 shows the magnitudes of the non-zero elements of P  for the curved beam with 
2 1 1200χ =  as a function of a frequency. Note that there are always six energy transport paths 

(i.e., six non-zero elements in the power matrix) at any frequency. At high frequencies, the 
powers associated with the waves tend to those of the straight beam: it is seen that the 
normalised magnitudes of 11P , 25P  and 33P  tend to unity above the ring frequency 1Ω = . 
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Figure 3. Non-zero elements of the power matrix for the curved beam with 2 1 1200χ = : 11P  (         ), 

22P  (           ), 33P  (            ), 25P  (         ), 26 35P P=  (         ), 36P  (         ). In the figure 33P  and 36P  are 

normalised with respect to LEAkω  and the others are normalised with respect to 32 BEIkω . 
 

The power matrix is not diagonal except for the frequency region I. A further 
transformation can be defined using a power basis, where energy is transported independently 
by a single component, using the eigenvalues and eigenvectors of the power matrix. Let V  be 
the diagonal matrix consisting of the (real) eigenvalues and E  be the (unitary) matrix whose 
columns are the eigenvectors of P. Since 1−=P EVE , equation (17) can be written as 
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where 1−=p E a  is a vector of power wave amplitudes. Since V  is diagonal, equation (21) 
indicates that energy is transported independently by the individual power wave components of 
p . For example, V  and E  in the frequency region II are given by  
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−⎢ ⎥
⎣ ⎦
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where 26 26P Pφ = . Similar transformation into the power wave domain in the frequency 
regions III and IV can also be made [7].  

5. CONCLUDING REMARKS 

This paper concerned in-plane motion of curved beams based on Flügge’s theory. 
Displacement and force matrices were derived – these allow transformations to be made 
between the physical and wave domains enabling a systematic analysis to be made of 
waveguide structures with curved components. The energy flow associated with waves in the 
curved beam was also obtained in a systematic way. It was seen that energy is transported 
independently by propagating waves or by the interaction of two wave components, for which 
the wavenumbers are a complex conjugate pair. A further transformation to power wave 
components was found – these components transport power independently.  
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