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Abstract 
 
A quarter car model is used to investigate the dynamic characteristic and random vibration 
response of cars with uncertainty in this paper. The sprung mass, unsprung mass, suspension 
damping, suspension and tyre stiffness are considered as random variables. The road 
irregularity is considered a Gaussian random process and modeled by means of a simple 
exponential power spectral density. The numerical characteristics including mean value and 
standard deviation of the natural frequencies, mode shapes and root mean square random 
response of vehicles are obtained by using the Monte-Carlo simulation method. The influences 
of the randomness of the vehicle’s parameters on the dynamic characteristic and random 
response are investigated in detail using a practical example. 

1. INTRODUCTION 

The vibration of an on-road vehicle is predominantly excited by the unevenness of the road 
surface on which the vehicle travels. Vehicle dynamic analysis has been a hot research topic for 
many years due to its important role in ride comfort, vehicle safety and overall vehicle 
performance. Numerous papers about the theoretical and experimental investigation on the 
dynamic behaviour of passively and actively suspended road vehicles have been published 
[1-3]. The quarter-car model [4], half-car model [5] and full-vehicle model [6] have been 
developed with researches related to the dynamic behaviour of vehicle and its vibration control. 
The simplest representation of a ground vehicle is a quarter-car model with a spring and a 
damper connecting the body to a single wheel which is in turn connected to the ground via the 
tire spring. The mass of the body usually is described as sprung mass, the mass representing the 
wheel, tire, brakes and part of the suspension linkage mass is referred to as the unsprung mass. 

Although mathematical modelling tools for analysis/computation have experienced a 
tremendous growth, most research in vehicle dynamics was based on the assumption that all 
parameters of vehicle systems are deterministic. Actually, the spring stiffness and damping rate 
may vary with respect to the nominal value due to production tolerances and/or wear, ageing... 
etc. The vehicle body mass and the tyre radial stiffness can have stochastic variations due to the 
variety of possible vehicle loading conditions and to the uncertainty of the inflating pressure of 
poorly maintained tyres [7]. In cars and buses, weight and placements of passengers often 
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exhibit significant variability. In addition, even same brand and type vehicles leaving the 
production line may have uncertainties in size, mass and performance and so on. Hence, the 
problem of vehicle vibration subject to uncertain parameters is of great significance in realistic 
engineering applications. 

Vibration analysis for deterministic vehicle systems under stochastic road excitations can 
be accomplished by structural random vibration theory. For the dynamic analysis of structures 
with uncertainties, stochastic analytical methods such as the Monte-Carlo simulation method 
(MCSM) and perturbation method (PM) are widely used. In the MCSM, the values of the 
structural parameters are changed within a given range. A large amount of dynamic analyses on 
the same structure is then performed, and the statistical data (mean value and standard deviation) 
of the natural frequencies, mode shapes and dynamic response are obtained [8]. In practice, this 
is the method of last resort since the attendant computational cost can be prohibitive for systems 
modelled using a large number of degrees of freedom. The PM uses a combination of matrix 
perturbation theory, finite element method and Taylor series expansion to obtain the dynamic 
characteristics of stochastic structures [9]. The major drawback of such local approximation 
techniques is that the results become highly inaccurate when the coefficients of variation of the 
input random variables are increased. In order to investigate the effect of individual parameters 
on the structural system response expediently and reduce the computational work, the random 
factor method (RFM) has been proposed and developed to analyze the dynamic response of 
structures with random parameters recently [10]. The main limitation of the RFM is that the 
randomness of each kind of parameter over all elements must be totally correlated. 

In this paper, a two-degree-of-freedom quarter car model is used to investigate the 
vibration response of cars with uncertainty under random road input excitations. The vehicle’s 
parameters are considered as random variables and the road unevenness is considered a 
Gaussian random process and modelled by means of a simple exponential power spectral 
density (PSD), the so-called “one slope PSD”. The first two statistical moments of the dynamic 
characteristic and response are obtained by using conventional Monte-Carlo simulation 
method. A practical example is used to investigate the influences of the uncertainty of the 
vehicle’s parameters on the vehicle’s dynamic behaviour. 

2. VEHICLE MODEL AND RANDOM VIBRATION ANALYSIS 

A two-degree-of-freedom quarter-car model is shown in Figure 1. In this model, the sprung and 
unsprung masses corresponding to the one corner of the vehicle are denoted respectively by sm  
and um . The suspension system is represented by a linear spring of stiffness sk  and a linear 
damper with a damping rate sc , while the tyre is modelled by a linear spring of stiffness tk . 
Since damping in the tyre is typically very small, it is neglected in this study. rx  is the road 
displacement input. The model is generally reputed to be sufficiently accurate for capturing the 
essential features related to discomfort, road holding and working space.  

The linear equations of motions of the vehicle system model are 
 

0)()( =−+−+ ussussss xxkxxcxm &&&&                                           (1) 
 

0)()()( =−+−−−− rutussussuu xxkxxkxxcxm &&&&                              (2) 
 
By using a vector matrix form, equations (1) and (2) can be rewritten as 
 

[ ]{ } [ ]{ } [ ]{ } { }PXKXCXM =++ &&&                                             (3) 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

3 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

u

s

m
m

M
0

0
,[ ] ⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

ss

ss

cc
cc

C ,[ ] ⎥
⎦

⎤
⎢
⎣

⎡
+−

−
=

tss

ss

kkk
kk

K , 

 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
rt xk

P
0

,{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
u

s

x
x

X                                                  (4) 

 

 
 

Figure 1. The quarter-car model of the vehicle. 
 

 
The displacement rx  (road irregularity) may be represented by a random variable defined 

by a stationary and ergodic stochastic process with zero mean value. The power spectral density 
of the process may be determined on the basis of experimental measurements and in the 
literature there are many different formulations for it. In this paper for sake of simplicity, the 
following spectrum [7] is considered 
 

2)(
ω

ω vAS b
xr

=                                                           (5) 

 
From equations (4) and (5), the power spectral density matrix[ ])(ωPS  of }{P  can be obtained 
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Equation (3) presents a set of coupled differential equations. If the vehicle is initially 
considered at rest, then its solution can be obtained in terms of the decoupling transform and 
Duhamel integral [10] 
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where [ ]φ is the normal modal matrix of the vehicle and can be expressed as 
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[ ])(th  is the impulse response function matrix of the vehicle, and can be expressed as 
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where jω  and jζ  are respectively the jth natural frequency and modal damping of the vehicle, 

and 212 )1( jjjd ζωω −= . 

 From equation (7), the correlation function matrix of the displacement response of the 
vehicle [ ] }{ }{ ))()(()( T

u tutuER εε += can be obtained 

 

[ ])(εuR = [ ][ ][ ] [ ][ ][ ] [ ]∫ ∫ +−
t t

TT
P

T ddhRh
0 0

111 )()()( ττφτφεττφτφ                     (11) 

 

where [ ])( 1 εττ +−PR  is the correlation function matrix of the }{ )(tP .  

By performing a [ ])(εuR  Fourier transformation, the power spectral density matrix of the 
displacement response [ ])(ωuS  is 

 

[ ] [ ][ ][ ] [ ][ ][ ][ ]TP
T

u HSHS φωφωφωφω )()()()( ∗=                                (12) 

 

where [ ])(ω∗H  is the conjugate  matrix of [ ])(ωH , [ ])(ωH  is the frequency response function 
matrix of the vehicle and can be expressed as 
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Integrating [ ])(ωuS  within the frequency domain, the mean square value matrix of the 
vehicle’s displacement response, that is, [ ]2

uψ  can be obtained 

 

[ ] [ ] [ ][ ][ ] [ ][ ][ ][ ]∫∫
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Then the mean square value of the kth degree of freedom of the vehicle’s dynamic displacement 
response can be expressed as 

 

    [ ][ ] [ ][ ][ ] T
kP

T
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rr
⋅⋅= ∫

∞
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∗ )()()(2    ( 2,1=k )                 (15) 

 

where kφ
r

 is the kth line vector of the matrix [ ]φ . 

3. RANDOM RESPONSE ANALYSIS OF VEHICLE WITH UNCERTAIN 
PARAMETERS 

The vehicle’s parameters corresponding to sm , um , sk , sc  and tk are simultaneously 

considered as random variables. The randomness of vehicle’s parameters will result in 
randomness of the matrices [ ]M  and [ ]K  and [ ]C , and consequently the natural frequencies 

jω , mode matrix [ ]φ  and modal damping jζ . The random variables are each given a mean 
value (μ ) and standard deviation (σ ), for example, 

ss mmsm σμ ±= . A further parameter used 

in this paper is the variation coefficient ν , defined by the ratio of the standard deviation to the 
mean value, that is μσν /= . 

In the MCSM, N samples of the random variables are generated in given ranges. The 
implementation of the method consists in the numerical simulation of these samples associated 
to the random quantities of the physical problem, the procedure used for a deterministic 
analysis is repeated for each sample of the simulation process, obtaining then N responses that 
are computed to get the first two statistical moments of the response. For the 
two-degree-freedom system, the computational effort is acceptable for analysis of the mean 
value and standard deviation of vehicle’s dynamic characteristics and random response. By 
using the conventional Monte-Carlo simulation method, 

jωμ , 
jωσ , [ ]φμ , [ ]φσ , 

jζμ , 
jζσ , 2

ukψμ  

and 2
ukψσ can be obtained. 
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4. NUMERICAL EXAMPLE 

The mean values of vehicle’s parameters for this study are given in Table 1, which are typical 
for a lightly damped passenger car [4]. In the following simulations, )(54.1 meAb −=  and 

)/(50 smv = are taken into consideration. In order to investigate the effect of the uncertainty of 
random variables sm , um , sk , sc  and tk  on the vehicle’s dynamic characteristics and 
responses, the values of variation coefficient 

smν , 
umν , 

skν , 
scν  and 

tkν  of random vehicle’s 
parameters sm , um , sk , sc  and tk  are respectively taken as different groups. The 
computational results of natural frequencies, mode shapes and mean square displacement 
responses are respectively given in Tables 2, 3 and 4, in which 10000 simulations are used. In 
Table 4, 2

usmψ  and 2
uumψ  respectively denote the mean square random displacement response of 

sprung and unsprung masses. 
 

 

Table 1. The mean values of vehicle system parameters for the quarter-car model 

Parameters Mean values 
Sprung mass sm  

smμ =240kg 

Unsprung mass um  
umμ =36kg 

Secondary suspension stiffness sk  
skμ =980Ns/m 

Damping coefficient sc  
scμ =16,000N/m 

Primary suspension stiffness tk  
tkμ =160,000N/m 

 

 

Table 2. The computational results of natural frequencies (unit: rad/s) 

Model 1ω
μ  

1ω
σ  

2ω
μ  

2ωσ  
Deterministic model 

smν =
umν =

skν =
tkν =0 7.7801 0 69.9645 0 

smν =0.1 
umν =

skν =
tkν =0 7.8138 0.4002 69.9650 0.0047 

umν =0.1 
smν =

skν =
tkν =0 7.7801 4.9532e-4 70.2139 3.6088 

skν =0.1 
smν =

umν =
tkν =0 7.7711 0.3582 69.9665 0.3292 

tkν =0.1 
smν =

umν =
skν =0 7.7768 0.0379 69.9084 3.1882 

smν =
umν =

skν =
tkν =0.1 7.8003 0.5388 70.1663 4.8127 
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Table 3. The computational results of mode shapes 

Model 11φμ  
11φσ  

22φμ  
22φσ  

Deterministic model 
smν =

umν =
skν =

tkν =0 -0.0645 0 0.1666 0 

smν =0.1 
umν =

skν =
tkν =0 -0.0648 0.0033 0.1666 1.1392e-5 

umν =0.1 
smν =

skν =
tkν =0 -0.0645 4.2097e-6 0.1672 0.0086 

skν =0.1 
smν =

umν =
tkν =0 -0.0645 7.5966e-6 0.1666 1.9614e-5 

tkν =0.1 
smν =

umν =
skν =0 -0.0645 8.1962e-6 0.1666 2.1163e-5 

smν =
umν =

skν =
tkν =0.1 -0.0648 0.0033 0.1672 0.0086 

 

Table 4. The computational results of mean square displacement (unit: mm2) 

Model 2
usmψ

μ  2
usmψ

σ  2
uumψ

μ  2
uumψ

σ  

Deterministic model 
smν =

umν =
skν =

scν =
tkν =0 438.2249 0 1.0259e+3 0 

smν =0.1 
umν =

skν =
scν =

tkν =0 430.1550 36.13936 1.0146e+3 10.82472 

umν =0.1 
smν =

skν =
scν =

tkν =0 426.8979 13.23232 1.0141e+3 59.23112 

skν =0.1 
smν =

umν =
scν =

tkν =0 429.3036 31.69608 1.0142e+3 14.612 

scν =0.1 
smν =

umν =
tkν =

skν =0 427.4127 0.0608 1.0141e+3 0.0344 

tkν =0.1 
smν =

umν =
skν =

scν =0 436.2534 24.11112 1.0210e+3 47.258 

smν =
umν =

skν =
scν =

tkν =0.1 440.3322 61.32608 1.0205e+3 84.52896 
 

5. CONCLUSIONS 

(1) The uncertainty of the vehicle’s natural frequencies is dependent on the uncertainty of 
sprung mass, unsprung mass, suspension damping, suspension and tyre stiffness. The 
randomness of sprung mass produce the greatest effect on the vehicle’s first natural frequency, 
however, the randomness of unsprung mass produce the greatest effect on the vehicle’s second 
natural frequency. 

(2) The randomness of the mode shapes is almost dependent on the uncertainty of sprung 
mass and unsprung mass, and is almost independent of suspension and tyre stiffness.  

(3) The uncertainty of sprung mass and unsprung produce the greatest effect on the mean 
square displacement of them respectively. 

(4) Comparing with the case that only one of the uncertainty of sprung mass, unsprung 
mass, suspension damping, suspension and tyre stiffness is taken into account, the change of the 
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vehicle’s dynamic characteristics and response are greater when their uncertainty are 
considered simultaneously. This kind of result is coincident with the conclusions in references 
[10,11]. 
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