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Abstract 
 
The Rijke tube is modelled as an open-ended tube with a blockage, jump in cross-section and 
jump in mean temperature. Its Green function is known in the frequency domain as well as in 
the time domain. For the time-domain problem, the heat release characteristic has the form of 
a real function (giving heat release rate in terms of the acoustic velocity at the heat source). 
An integral equation is derived, which involves this heat release characteristic and the time-
domain Green function. The integral equation is solved numerically by an iteration, stepping 
forward in time to give the time history of the acoustic velocity and of the heat release rate. 
Both linear and nonlinear heat release characteristics can be studied by this method. For the 
frequency-domain problem, the heat release characteristic has the form of a transfer function 
(relating complex velocity amplitudes to complex heat release amplitudes). An equation is 
derived for the complex eigenfrequencies of the heat-driven oscillation in the Rijke tube. This 
equation involves the transfer function and the frequency-domain Green function. It is solved 
numerically to give the frequency and growth rate of any mode in the Rijke tube.  
 

1. INTRODUCTION 

1.1 Rijke tube configuration 

We consider a Rijke tube with axisymmetric geometry; a cross-section between the tube axis 
and the tube wall is shown in Figure 1. The ends are open with pressure nodes just outside the 
tube at 1= �x  and 2= �x  (Rayleigh end correction). There is a blockage, a change of cross-

sectional area from 1�  to 2�  and a jump in mean temperature from 1T  to 2T . The speed of 

sound jumps from 1c  to 2c  due to the temperature jump. 
 
The blockage, which is assumed to be compact, is modelled by an incompressible “airplug” of 
effective length effL  oscillating parallel to the x -axis. effL  depends on the geometry of the 
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flame holder and has to be calculated numerically (see [1]). In the region around the blockage, 
the acoustic field is three-dimensional, but in the upstream region between 0x =  and 1X , as 
well as in the downstream region between 2x X=  and L , the field is one-dimensional. 
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Figure 1 - Rijke tube with a point source at qx x=  

 
The jump in mean temperature is caused by a steady heat source (marked by a solid grey line 
in Figure 1) which is situated near the downstream edge of the flame holder; the unsteady heat 
source (marked by a broken grey line) is assumed to be just downstream of this point, at 

= qx x ; its rate of heat release per unit mass of air (from the heat source to the air) is  

 
 '( , ) ( ) ( )= δ − qq x t q t x x .                (1) 

1.2 The Green function 

An important element of our theoretical model is the exact acoustic Green function 
( , , , )′ ′G t tx x . This is the velocity potential in the tube at position x  and time t , created by an 

impulsive point source at position ′x  and time ′t . The exact Green function is the solution of  
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inside the tube ( c  is the speed of sound, taking values 1c  and 2c  in the upstream and 
downstream region, respectively) and satisfies the following boundary conditions: It is zero at 

1= �x  and 2= �x  (this neglects losses from the ends), and it has a normal derivative equal to 
zero on all internal surfaces and on the tube axis. It also satisfies the conditions of reciprocity 
and causality. For the case where 'x  is in one of the one-dimensional regions, Green’s 
function has the form  

 
1

( , ', ') ( , ') H( ')sin ( ')n n
n

G x x t t g x x t t t t
∞

=
− = − ω −� .                    (3) 

 
H is the Heaviside function, ωn  are the eigenfrequencies of the Rijke tube (with steady 
heating) and ng  are the modal amplitudes. Green’s function is an impulse response: it is zero 
before the impulse (at '=t t ) and consists of a superposition of eigenmodes (numbered by the 
index n ) thereafter. 
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The frequency-domain equivalent of ( , ', ')G x x t t−  is the time-harmonic Green function 
ˆ ( , ', )G x x ω , which satisfies  

 
2

2
2

ˆ
ˆ ( ')
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k G x x
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∂ + = δ −
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,                (4) 

and the same boundary conditions as G . The wave number k  takes the values
1c

ω
 and 

2c
ω

 in 

the upstream and downstream region, respectively.  
 
Analytical expressions for , ( , ')n ng x xω  and ˆ ( , ', )G x x ω  have been derived in [1] and are 
listed in the Appendix for the case where 'x  is in the downstream region. 
 

2. TIME DOMAIN PROBLEM 

2.1 Governing equation 

The velocity potential φ  in the Rijke tube is governed by the nonhomogeneous wave equation 
(see [2] p. 508; γ  is the specific heat ratio), 
 

 
2 2

2 2 2 2
1 1

( , )
∂ φ ∂ φ γ − ′− = −
∂ ∂

q x t
c t x c

.                 (5) 

 
We will derive an integral equation from (5) and (2) by performing the following steps: 
Equation (5) and the one-dimensional form of (2) are written in terms of the source variables 

'x  and 't ; (2) is multiplied by ( ', ')φ x t , (5) by ( , ', ')−G x x t t , and the resulting equations are 
subtracted. This gives 
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This equation is integrated with respect to ′x  (from 1�  to 2� ) and ′t  (from 0 to t ). For a heat 
release of the form (1), the result can be simplified (using the boundary conditions at the tube 
ends) to give  
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We assume the following initial conditions: 
  

 ' 0( ', ') 0=φ =tx t    and    
' 0

( ', ')
0

' =

∂φ =
∂ t

x t
t

   for all 1 2' ( , )∈ � �x ,          (8) 
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i.e. the velocity and acceleration are zero throughout the tube at the time ' 0=t . Combined 

with causality of the Green function ( 0=G  and 0
'

∂ =
∂
G
t

 for 't t≤ ), equation (7) then 

simplifies, due to the second integral on the right hand side becoming zero.  
 
The remainder of (7) can be turned into an equation for the velocity by differentiating with 
respect to x . Evaluation at = qx x  leads to an integral equation giving the velocity at the heat 

source in terms of the heat release, 
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the abbreviation 
( , )

( )
=

∂φ=
∂ q

q
x x

x t
u t

x
 has been introduced for the velocity at the heat source. 

 

2.2 Numerical solution 

The x -derivative of Green’s function is calculated from (3) and inserted into (9). This gives 
(using complex notation) 
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The integral in (10), i '

' 0

( ) e ( ') d 'ω

=
= � n

t
t

n
t

I t q t t , can be split into two parts, one over the 

interval (0, )− ∆t t , and the other over an interval of width ∆t , where ∆t  is a small time step, 
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The first integral represents ( )− ∆nI t t . The second integral can be approximated: the time 
interval ∆t  is assumed to be very small, and therefore the heat release rate in this interval is 
nearly constant and equal to ( )− ∆q t t . With these results, (11) can be written as  
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and this leads with equation (10) to  
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The heat release rate q  generally depends on aerodynamic fluctuations in the tube; this 
dependence is called the “heat release characteristic”. In many cases, this dependence is of the 
form 
 
 ( ) ( ( ))qq t q u t= − τ ,               (14) 

 
i.e. q  is a function of the acoustic velocity at the heat source, delayed by a time lag τ .  
 
Equations (14) (evaluated at t t− ∆ ), (12) and (13) comprise an iteration procedure for the 
time history of the velocity ( )qu t , and also that of the heat release ( )q t . They are solved by 

stepping forward in time with steps t∆ . The starting point of the iteration is provided by the 
initial condition 00

( )q t
u t u

=
− τ = .  This precedes the initial conditions specified in (8). 

 

2.3 Numerical results and discussion 

The iteration described by equations (12) and (13) was performed numerically for a tube with 
the following properties: 
 
 1 m=L  (tube length), 1 0 014 m.= −� , 2 1 014 m.=� ,   

 2

1
1 128.=�

�
, 0 093 meffL = . , 

 1 288 K=T  (room temperature), 2 488 K=T ,  

 1
1 342 m s−=c , 1

2 446 m s−=c . 
 
The heat source was located at 0.3qx L= , a position where the fundamental mode in the tube 

is unstable and the second mode is stable. The eigenfrequencies of the first two modes are 
1

1 1235 s−ω =  and 1
2 2722 s−ω = . 

 
The heat release rate known from hot wire theory is given by | ( ) |qa b u u t+ + − τ [3], where 

,a b  are positive constants and u  is the velocity of the mean flow. The fluctuating part is   
 
 ( ) | ( ) |qq t b u u t b u= + − τ − .             (15) 

 
Figures 2 and 3 show the time histories of ( )qu t  and ( )q t , respectively, for the heat release 

characteristic (15) with  
 

 5 3/ 2 7 / 25 10 m sb × −= , 11.0 m su −= , 0.0002 sτ = . 
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Figure 2 - Time history of the velocity ( )qu t  
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Figure 3 - Time history of the heat release rate ( )q t  

 
In the early stages of the time histories, the exponential increase of the amplitudes is evident. 
This is expected at low amplitudes, where a linearized version of (15) is valid. When the 

velocity amplitude approaches the mean velocity of 11.0 ms− , the rate of increase slows 
down. Flow reversal leads to a period doubling of the heat release rate in the last third of the 
time history. The velocity amplitude continues to grow in this nonlinear regime, without 
reaching a limit cycle. 
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3. FREQUENCY DOMAIN PROBLEM 

3.1 Equation for the eigenfrequencies of the heat-driven oscillations 

The steps described in section 2.1 and leading up to the governing equation (9) can be 
followed in the frequency domain to give 
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u q
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ˆ ( )qu ω  and ˆ( )q ω  are the Fourier transform of ( )qu t  and ( )q t , respectively, e.g. 
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tq t q
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− ω
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= ω ω

π �
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The frequency domain equivalent of the heat release characteristic is the transfer function 
( )T ω , which relates the heat release ˆ( )q ω  to the velocity ˆ ( )qu ω , 

 
 ˆ ˆ( ) ( ) ( )qq T uω = ω ω .               (18) 

 
This can be used to substitute for ˆ( )q ω  in (16) to give 
 

 
2

'

ˆ1 ( , ', )
1 ( )

q
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             (19) 

This equation determines the (generally complex) eigenfrequencies of the heat-driven 
oscillations in the Rijke tube. 

3.2 Numerical results and discussion 

Equation (19) can be solved by the Newton/Raphson method to obtain the complex 

eigenfrequencies. This was done for the transfer function i( ) e
2

b
T

u
ωτω =  (frequency-

domain equivalent of the linearised version of (15)) and for the parameter values listed in 
section 2.3. The time lag τ  was varied and the imaginary part of the complex 
eigenfrequencies, which indicates the stability behaviour of a mode, was noted. The first 
mode was found to be unstable in the range 10 < ω τ < π , and approximately the same range of 
instability was found for the second mode. These results are in line with those reported by 
earlier authors [4]. 
 

4. CONCLUSIONS AND OUTLOOK 

A Green function approach has been presented to model the behaviour of a Rijke tube in the 
time domain as well as in the frequency domain. The time-domain problem gives the time 
history of the oscillation in the tube and allows one to study the effect of nonlinear heat 
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release characteristics. Features, such as limit cycles, period-doubling, etc. can be predicted. 
The frequency-domain problem gives the frequencies and growth rates of the modes in the 
tube. The effect of different flame transfer functions can be examined with this approach. 

APPENDIX 

The eigenfrequencies nω  are the roots of ( ) 0f ω = , where  
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1τ  and 2τ  are wave travel times: 1 1
1

1

X
c
−τ = �

 and 2 2
2

2

X
c
−τ = �

.  

The Green function amplitudes in (3) are given by  
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where ′f  is the derivative of the function ( )ωf  in (3); C  and D  are given by 
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The time-harmonic Green function is given by 
 

 
( , ) ( ', )ˆ ( , ', )
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G x x
f

ω ωω =
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The expressions (21) to (24) are for the case where 'x  is in the one-dimensional region 
downstream of the flame holder. 
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