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Abstract 
Vertical pumps are widely used owing to the fact that they occupy small floor space. In this type 
of pumps, however, the vibration problems are very important, since in many cases, they have 
less stiffness in comparison with later pumps. This study presents a simple solution method for 
calculating the natural frequencies and modes of vertical pumps. In this study, a model of a 
vertical pump was developed and the no dimensional parameters for the vibration 
characteristics of it were determined. Added mass was calculated for the effects of water and 
the transfer matrix method was used. Also the result of the calculation was demonstrated by the 
practical test of power plant vertical pump. 

1. INTRODUCTION 

A structure in or in contact with a fluid has significantly varying dynamic characteristics such 
as natural frequency and damping, with the resistance of the fluid.  The effects of fluid on a 
structure element vibrating in a fluid include inertia effect and damping effect: the former is 
usually studied in the manner of introducing the concept of added mass. In the past, as it was 
considered that except for structures at fine intervals, damping was not important in general, 
the relevant matters were limited primarily to studies on lubrication. Studies on fluid-related 
structures were intended to protect all kinds of vessels and pipes against damages caused by 
flow or earthquake, which was one of concerns in the petrochemical industry and power plant. 
After that, with the technological advance in revolutionary machines such as turbine blade and 
vertical pump, pressure vessel, heat exchanger and nuclear reactor components, many studies 
on the coupled fluid-structure systems were actively performed, including study on the effects 
of liquids on the dynamic motions of immersed solids [1], theoretical study on the added mass 
and damped vibration coefficient of vibrating rod in viscous fluids [2], and study on the 
analysis of added mass with finite-element method [3]. Based upon the results of these studies, 
Shimogo [4] conducted testing and interpretation on the vibration of vertical pump by 
replacing the effect of water pressure with added mass, and reported that resonance frequency 
decreased by approx. 10% in a pipe filled up with water, however the rotational shaft and 
water flow in the pipe had little or no influence upon resonance frequency. In addition, Yang 
[5] calculated the added mass of water with referring to the formula suggested by Fritz [1] and 
analyzed the time response to periodic external force and the eigenvalue of vertical pump with 
lumped mass method. Recently, in connection with the vibration of liquid vessel, the relevant 
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studies are in progress [6-8]. Although numerous studies on the vibration of beam have been 
conducted till now, a majority of them were limited to beams with relatively simple shapes 
and were difficult to apply their results to the practice of beam design because of very 
significant differences from the vibration of actual structural elements or too long time 
required to calculate the actual values. Also if the analysis model was modified a little, the 
existing analysis methods became inefficient. For actual structures, their beams are often 
supported even halfway. In the case of double-span beam like this, both the beams of the 
central support point affect vibration characteristics each other. In this study, a vertical pump 
was modeled with double-span beam, transfer function matrix was induced in consideration 
for added mass and the free vibration of vertical pump model was analyzed.  

2. THEORETICAL BACKGROUND&ANALYSIS 

2.1 Analysis Model 
 
A vertical pump consists of motor section in the upper part, impeller section in the lower 
part and column section in the middle part. As a model for analyzing the vibration of 
vertical pump, a double-span beam immersed partially in fluids is assumed as shown in 
Figure 1. Here, 1M and 2M  means the mass of motor and impeller, respectively. In the 
model shown in Fig. 1, since the length of column section is much larger than its 
diameter, assuming that it is a beam, its shear effects and rotary inertia effects are 
neglected.  

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1.  Vertical pump model. 
  
2.2 Kinematic Equations & Transfer Function Matrix 
 
Station i is combined with translational spring, rotatory spring, lumped mass and rotational 
mass moment of inertia, and a multi-span beam whose length of field i (interval between station 
i and station i+1), bending stiffness and mass per unit length are equivalent to il , iEI and im , 
respectively is considered. The equation of bending vibration in the field i is:  
  



ICSV14 • 9-12 July 2007 • Cairns • Australia 

3 

iit
w

ix
w

i lxmEI i

i

i ≤≤=+
∂

∂

∂

∂ 0,02

2

4

4

                                      (1) 

 
Assuming simple harmonic motion, the following equation is formulated 
 

wtxwtxw iiii sin)()( , =                                                     (2)  
 

Displacement )( ii xw is calculated as follows 
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Both the ends of field i are regarded as station i and station (i+1), and in field i, the displacement 
and its derivative at the rightmost and leftmost points, respectively are defined as follows:  
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where )(

)1(
n

LiW +  means the nth-degree derivative of displacement just at the left side of station 
(i+1). And, to induce nondimensional equations, the coefficient of nondimensional natural 
frequency, nondimensional displacement and its derivative are defined in sequence as follows:  
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Next, after substituting equation (3) for equation (5), ,321 ,, ccc and 4c are eliminated. Then, 

)(
)1(

n
LiW + (n=0,1,2,3) can be expressed in the function of )(n

iRW , and equations (6) and (7) are 

applied again, inducing four non-dimensional equations. Assuming that  ''' ,, iRiRiR yyy and 
'''

iRy indicate the non-dimensional displacement, 1st-degree derivative, 2nd-degree derivative 
and 3rd-degree derivative, respectively right at the right side of station i, the station vector is 
defined as:  
 

T
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T
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The above-mentioned four non-dimensional equations can be expressed in the following 
determinant.  

iRiLi YFY =+ )1(                                                           (9)  
 

where matrix iF meets the followings.  
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2.3 Conditions for Inter-span Combination 
 
Since the displacements and tilt angles should be identical before and after station i, the 
formulas below should be established.  

`iRiL WW = ,                                                                   (11-a) 
 

iRiL Θ=Θ ,                                                                   (11-b) 
 

Moreover, assuming that bending moment and shear force in the section of beam are defined as 
bM and V, respectively, the equilibrium conditions of shear force and moment for station i are 

formulated as follows:  
 

iRiiLiRiRi WwMVVWk 2−=−+−                                                        (12-a) 
 

iRiiLbiRi wjMt Θ−=+Θ− 2)(                                                     (12-b) 
 

The relation among the displacement, tilt angle and shear force of beam is applied and the 
above equations are integrated with referring to equations (7-a) and (7-b). Then, the following 
non-dimensional determinant is deduced ( iS  is a matrix).  
 

niYSY iLiiR ,.....,3,2, ==                                                    (13) 
 
2.4 Added mass 
 
To determine the reaction of water acting on a vibrating beam in fluids, it is required first 
to calculate the pressure distribution around the beam. This pressure distribution can be 
calculated with Navier-Stokes equations and continuity condition. If the amplitude of 
beam is small, nonlinear terms in Navier-Stokes equations can be neglected, and for 
nonviscous fluids, pressure distribution is expressed in Laplace's equations. In this study, 
as the length of beam is much larger than its sectional dimension, it can be regarded as 
two-dimensional problems, and governing equations and boundary conditions for the 
pressure distribution are as follows:  
 

,02

2

2

2

=+
∂
∂

∂

∂

y
P

x
p                                                             (15) 

ny
p

x
p aρβα −=+ ∂

∂
∂
∂                                                       (16) 

 
Where n means the direction in which it turns towards fluids perpendicularly to structure 
surface; α  and β  mean the contacted form by the axes x and y against direction n, 
respectively. It is known that p meeting the two equations above is consistent with the 
variational problem minimizing the following function [9].  
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where A represents the inside of fluid and c the boundary of fluid. Now, to minimize φ  
in equation (17), the node pressure of finite element e is expressed in vector ep . 
Assuming that pressure is the function for the coordinates  x and y, matrix D meeting the  
following equations can be induced with using the relation among node pressure ep and 
node coordinates x and y.  
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Thus, the first term of function φ  for element e is:  

,
2
1
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T
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where eA  means the area of finite element e. Then, assuming that the bth boundary is a segment 
connecting two nodes i and j, its length ,bL  and its vertical acceleration ba , the following 
equation is obtained.  
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The second term of the function φ  in equation (17) is formulated as follows:  
 

b
T
bb Ph=φ                                                                (23) 

 
where bP  indicates the vector composed of pressure at two nodes i and j forming the bth 
boundary. As a result of summing up eφ and bφ  in equations (19) and (23) for all the 
elements and boundaries in fluids, function φ  is formulated as follows:  
 

PHGPP TT +=
2
1φ                                                         (24) 

 
where G and H represent the combinations of the nodes corresponding to eg and bh , 
respectively. The condition to minimize φ  for node pressure vector P is induced as 
follows:  
 

0=+ HGP                                                            (25) 
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The force acting on solid elements moving at accelerated rates in contact with fluids is:  
 

PHF T

2
1

=                                                           (26) 

 
As dividing this force by the acceleration, the added mass is obtained.  

3. BOUNDARY CONDITIONS AND EIGENVALUES 

 
In station 1, the equilibrium condition of shear force and moment can be expressed in the 
following equations.  
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RRbR wjMt 1111` )( Θ−=+Θ−                                    (28) 
 

The relation among the displacement, tilt angle and bending moment and shear force of the 
beam is applied and integrated, and the equations of equilibrium condition in station n can be 
formulated as the non-dimensional equations below.              
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Inducing the equations of equilibrium condition in station n in the same manner, the following 
equations are obtained.  
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Using the equations induced till now, the relation among the displacement in stations 1 and 
(n+1), and its derivatives, is formulated as follows:  
 

RnnLn YFSFSFY 1122)1( .......=+                                                (31) 
 

Applying the boundary condition of equation (15) to this equation, 1Ω can be calculated. And, 
based on 1EI , 1m , and the full length of beam l , the coefficient of non-dimensional natural 
frequency  Ω is defined as follows:  
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4. ANALYSIS RESULTS & REVIEW 

In accordance with the equations induced previously, the added mass matrix was obtained, and 
subsequently, field matrix, state matrix and boundary condition equation were combined to 
prepare a computer program capable of solving the problem of Eigenvalues. The results of 
calculation are as follows.  
 
4.1 Kovats’Model 
 
Figure 2 shows the model suggested by Kovats [10] which was used to analyze the vibration of 
the upper structure of vertical axial pump. This model has a translational spring in the middle of 
cantilever beam and lumped mass at the free ends, where 112 =ll , 112 =EIEI  , 

112 =mm , 111 =lmM  ,  and .801
3
1 =EIkl  Pak[11] divided this model into twos beams, 

applied eight boundary conditions to two equations of motion and calculated the natural 
frequency.  

 
Figure 2 Kovats' model for vertical pump. 

 
Table 1 summarizes the natural frequency coefficients Ω  and the results of the analysis 
performed by Pak, suggesting that they are consistent with each other. Table 1  presents the 
non-dimensional natural frequency coefficient Ω  of Kovats’ Model . 
 

Table 1. Natural frequency. 
 

  Mode 1Mode 2Mode 3Mode 4Mode 5
Pak 1.587 4.54 7.15 10.289   

Analysis 1.587 4.54 7.15 10.2887 13.39
 
 
4.2 Double Span Beam Model 
 
The resources of the double-span model shown in Figure 1 are as follows: M1=120kg ; the mass 
of motor , M2=25kg ; the mass of impeller, ds=50mm ; the diameter of rotating shaft, 
dpi=200mm ; the inner diameter of column pipe dpo=215mm ; the outer diameter of column pipe 
db=450mm ; the inner diameter of barbell di=300mm ; the outer diameter of impeller t=40mm ; 
the thickness of support flange ρ =7790kg/m3 ; density E=2×1011N/m2 ; Young's modulus 
l1=1000mm, l2=3600mm l3=100mm, lw=1600mm. The motor and impeller were regarded as 
lumped mass. As barbell has far larger bending stiffness than that of column pipe or rotating 
shaft, it was regarded as a rigid body. It is known that if the outer diameter of disk with diameter 
do is completely fixed and the column of a rigid body with diameter di is fixed at the center of 
the disk, the corresponding rotational stiffness is as follows [12].  
 

αθ

3Etk =                                                                 (34) 

 
where t is the thickness of disk. α is as given in Table 2. 
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Table 2 Values of α . 
 

di/do 0.20 0.30 0.40 0.50 0.60 

α  0.595 0.320 0.167 0.081 0.035

 
Accordingly, this study assumed that the support flange corresponds to torsional stiffness with 
constant 1.279×108Nm. As a result of analyzing the model, the value of added mass matrix is as 
follows:  
 

00.000.000.000.0
00.049.25200.065.93
00.000.000.000.0
00.065.9300.039.57

−

−

=adm  

 
where the unit is kg/m. Depending on the presence of guarder, the values of natural frequency 
are given in Table 3, and Figure 3 shows the natural modes. Figure 4 shows changes in the 
primary natural frequency depending upon the inner diameter of barbell without guarder. As the 
inner diameter of barbell gets close to the outer diameter (0.30m) of impeller, the magnitude of 
added mass increases rapidly and consequently the natural frequency decreases rapidly.  
 
 

Table 3. Natural frequencies of the model of Figure 3. 
 

ModeWithout 
guarder 

With  
guarder 

1st 7.137 Hz 37.92 Hz 
2nd 48.33 Hz 52.33 Hz 
3rd 52.86 Hz 133.61 Hz 
4th 149.58 Hz 272.91Hz 
5th 290.26 Hz 469.38 Hz 

 
 
 

     

 
 

Figure 3. Natural frequency of the model. 
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Figure 4. Natural frequency of first mode as diameter of barbell varies. 

5. CONCLUSION 

 
This study aimed to analyze the bending vibration of vertical pump by modeling a vertical 
pump with double-span beam immersed in confined fluids. The reaction of fluids to vibrating 
beam was replaced with added mass, and a program capable of analyzing the natural frequency 
and natural mode of pump model was produced. Since assuming that the structure of pump is a 
continuous system using beam, transfer matrix was applied, it was possible to calculate 
accurate results for the pump model with less efforts, as well as to draw the non-dimensional 
design parameters related to the natural vibration of pump structure.  
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